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Abstract: Today data analytics is vital for companies willing to extrapolate information from their assets to support 
asset-related decisions. Information is relevant but not enough to exploit the potentials hidden in domain-related 
knowledge. The focus of this paper is predictive maintenance, herein knowledge is relevant to support the design of 
a Prognostics and Health Management (PHM) process to achieve a reliable decision-making. In this scope, the paper 
builds on the presumption that data analytics can be empowered by semantic data modelling to conceptualise and 
formalize data before the application of any kind of advanced algorithm implementing a data-driven approach. Thus, 
this research aims at proposing a semantic data model that guides the data analytics by revealing data characteristics 
and inter-relationships and guarantees completeness to finally support the PHM process. A data-driven approach, 
joining semantic data modelling and analytics, is proven through examples taken from the controlled environment of 
the Industry 4.0 Laboratory of the School of Management of Politecnico di Milano. 
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1.Introduction 

Today data analytics (DA) is vital for all the companies 
willing to extrapolate more and more information from 
their physical assets (plants, machines, and equipment) in 
the production systems. In fact, the extensive installation 
of sensors and, in general, condition monitoring systems 
are increasing the data sources at hands to improve the 
asset-related decision-making support. This phenomenon 
is influencing different domains. Production management 
(Cheng et al., 2018) and maintenance management (Lee et 
al., 2015) are two areas in which DA fosters benefits; their 
intersection is also fertile for DA (Ji and Wang, 2017). 
Specifically, maintenance is looking towards DA tools to 
extrapolate information about the assets the company 
owns, such as AHI (Asset Health Indicator) and RUL 
(Remaining Useful Life) (Lee, Jin and Bagheri, 2017). 

To obtain these results, the data collected by companies 
could be processed by statistical techniques (such as e.g. 
traditional reliability analysis techniques like Weibull 
analysis, or degradation modelling as Gamma process, 
Markovian-based models, Covariate-based hazard models 
etc.) and more advanced AI-based techniques (as machine 
learning and deep learning) (Si et al., 2011; Lei et al., 2018). 
This may be exploited in condition-based maintenance 
(CBM), which is a promising application of DA to 
monitor and control the asset degradation (Fumagalli et al., 
2019). This may help also to evolve towards a predictive 
maintenance strategy, anticipating failures by comparing 
normal conditions with forecasted asset performance 
(Márquez, Del Castillo and Fernández, 2020). 

However, DA per se cannot solve all maintenance-related 
issues especially if domain-related knowledge is missing or 
partially used. When addressing CBM and predictive 
maintenance, domain-related knowledge appears to be a 

cornerstone (Nuñez and Borsato, 2018). Thus, to exploit 
the data available by the increased number of sources, it is 
fundamental to enable their interpretation based on their 
semantics (Kiritsis, 2013). This promises to favour a step 
forward towards knowledge synthesis into a semantic data 
model useful for the effective building of CBM/predictive 
maintenance strategy based on DA. Hence, this research 
work aims at proposing a semantic data model to guide 
DA to monitor and control current asset state and predict 
its future degradation. 

More specifically, the overarching goal of the work is to 
develop an integrated semantic data modelling and DA to 
support the design of the PHM process implementing the 
CBM/predictive maintenance strategy within advanced 
systems; the final objective is to optimise the maintenance 
management based on proper decision-making powered 
by PHM (Guillén et al., 2016). The integration of semantic 
data modelling and DA is practically explored in a Proof 
of Concept (PoC) run within the controlled environment 
of Industry 4.0 Laboratory (I4.0Lab, industry40lab.org) of 
the School of Management of Politecnico di Milano. 

The document is structured as follows. Section 2 explores 
the literature summarising the main contributions related 
to semantic data modelling for CBM/predictive 
maintenance; Section 3 describes the proposed semantic 
data model while Section 4 presents the application in the 
I4.0Lab; at the end, Section 5 draws some conclusions and 
envisions future research works. 

2. Literature review 

A preliminary search of the extant scientific literature is 
performed to assess the use of semantic data modelling 
for CBM and predictive maintenance. The literature 
search is set according to the research protocol implying: 

https://www.industry40lab.org/
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Scopus as database, limitation to English-written 
documents, both journal and conference papers, keywords 
as (data model*) AND ((condition) OR (predictive)) AND 
(maintenance). It is worth noting the word semantic is not 
added to the keywords to not narrow the document 
search. Overall, the searching process returns 122 
documents with an ever-increasing trend, described by a 
mean yearly rate of +6 documents, with a peak of +14 
and +17 documents in 2018 and 2019, respectively. 
Conference papers govern the statistics about types of 
publication, with a significant 61,5% of the total amount. 

The literature review is conducted on 78 out of 122 
documents, by limiting the search to those documents 
addressing engineering topics, excluding medicine, 
agriculture and so on. Among the 78 documents, 3 are 
duplicated, 10 are not accessible, and 33 are out of scope. 
The documents labelled as out of scope include all works 
that do not address data modelling (e.g. papers generally 
reviewing the literature without any reference to data 
modelling) or that give data models a meaning different 
with respect to the intended focus of the research (for 
example, simulation models, Bayesian approach to cope 
with uncertainty, or statistical algorithm for prediction). At 
the end, 32 papers undergo a full text reading to 
extrapolate relevant variables for the analysis, looking at 
both data modelling objectives and languages (see Figure 
1 and Figure 2, respectively). 

 

Figure 1: Objective of the analysed documents 

The documents mainly deal with CBM or look for a more 
general improvement of the maintenance management 
software platform, especially relating to interoperability 
(Hassanain, Froese and Vanier, 2000; Campos et al., 2010). 
It should be noted that the total number of documents in 
Figure 1 is greater than the ones in Figure 2. This happens 
because most documents deal with data model for 
maintenance, but do not actually report the developed 
model in the paper, so it is hard to trace back to the used 
language. 

 

Figure 2: Use of data modelling language  

Based on the evidence from Figure 2, UML (Unified 
Modelling Language) is the most widespread modelling 
language due to its flexibility in adoption and ease of 

understanding. It is the de-facto standard formalism for 
object-oriented modelling (Negri et al., 2016). Also, 
EXPRESS-G is used as the graphical representation of 
EXPRESS semantic language used in the ISO 15926-2 
(West, 2011), in which a data model for reliability data 
exchange along the lifecycle is developed. In addition to 
UML and EXPRESS-G, other formalisms are adopted for 
semantic data modelling. The reader interested in an 
overview of those languages can refer to (Negri et al., 
2016). 

2.1 Data model definition 

The literature review shows how the term data model in 
maintenance comes with different meanings. Thus, it is 
important to properly define the perspective the authors 
are taking while dealing with this topic.  To this end, Table 
1 summarises the most relevant definitions of data model 
as retrieved in scientific literature selected for this paper. 

Table 1: Relevant definitions of data models 

Data model definition Reference 

“application-specific implementation-
independent representation of the data that 
will be handled by the prospective 
application” 

(Keet, 
2018) 

“classes of component objects with their 
own relationships and attributes” 

(Macchi et 
al., 2016) 

“depiction of the relationships that exist 
among specific values of data” 

(Luisi, 
2014) 

“representation of data in terms of named 
sets of objects, named sets of values, named 
sets of relationships, and constraints over 
these object, value, and relationship sets” 

(Embley, 
2009) 

“method of organizing data that reflects the 
basic meaning of data items and the 
relationships among them” 

(Gartner, 
2019) 

In line with the definitions, other evidences from literature 
are remarking the role of “semantic data model” as a data 
model with semantic-enriched relationships that could be 
further exploited in ontology for reasoning capabilities 

(Negri et al., 2017)1. Furthermore, it is observed that data 
models are extending their native domain of application, 
i.e. database modelling, to other domains, like PLM 
(Product Lifecycle Management) and ALM (Asset 
Lifecycle Management), where a remarkable role for 
decision-making is emergent (Polenghi et al., 2019). 

2.2 Concluding remarks 

The results of the literature review show interesting 
evidences on the adoption of semantic data modelling for 
CBM and predictive maintenance. The main overarching 
goals of their use could be summarised as follows: 

• to establish a stable connection between several 
transducers and to streamline the collected data 

 
1 In the reminder, “data model” and “semantic data 
model” are used interchangeably. 
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towards de-/centralised databases to foster a 
reliable asset monitoring; 

• to ensure interoperability between different IT 
software systems and their modules so as to 
establish an integrated information system; an 
important example in this regard is OSA-CBM, 

see also (ISO 13374-1, 2003) and mimosa.org; 

• to bridge and integrate business processes as 
design and operation of the asset or asset system;  

• to guarantee data quality, insuring availability of 
data and information while preventing errors by 
protecting and restricting from manual inputs. 

Notwithstanding the wide scope of work, Figure 1 shows 
that, even if well-adopted for CBM-related purposes, data 
modelling for predictive maintenance is not so developed 
in scientific research. Therefore, the current work aims at 
focusing predictive maintenance application. 

3. Proposed semantic data model 

The aim of this section is to propose a semantic data 
model that support the PHM process by guiding the DA 
for predictive maintenance. The formalism adopted is the 
UML due to its widespread adoption. Specifically, the 
formalism follows the guidelines from the OMG (Object 
Management Group, omg.org). To holistically represent 
the data model, the framework proposed by (Polenghi et 
al., 2019) is used, which is composed by five blocks. Being 
the framework defined for any AM-related decisions, it 
should be fitted for the PHM: this alignment is done by 
relating the framework’s blocks with the PHM process 
steps proposed by (Guillén et al., 2016) and levels in ISO 
13374 (L1-L6), as summarised in Figure 3. 

 

Figure 3: Alignment of semantic data model, PHM process 
step and ISO 13374 levels (adapt from (Guillén et al., 2016))  

According with the schematic representation of Figure 3, 
the asset initially requires the data model for its physical 
and logical description, which is needed to prepare further 
actions in regard to the data sources for the data treatment 
process step; thereafter, the “core” steps of the PHM 
process are enabled by the data model in its value-driven 
system analysis block to finally support decision-making. 
The semantic data model is illustrated in the next 
subsections. For a deeper view on model details, including 
its structure based on the five blocks, it is consultable and 
downloadable at the following GitHub link. 

3.1 Physical description block 

The physical description block collects all classes and 
relationships related to the physical part of the production 
plant. This is mainly composed by a series of classes 

connected by a composition relationship and it enables to 
express the hierarchical structure of the asset, within an 
asset system. Hence, the top class is the Asset_system, 
which is composed by different Asset classes representing 
the physical assets, like machines or equipment (e.g. 
milling machines or pumps). The Asset is composed by 
many Maintainable_item, like the power supply part or 
the unit in which a tool is installed (example in Figure 4). 

 

Figure 4: Asset system, asset and maintainable item classes 

Sensor is also a class belonging to this block. It represents 
a sensor installed on a specific Maintainable_item to 
monitor a specific variable (Sensor_maintainable_item) 
or a generic-purpose sensor when it measures a variable 
not directly related to the asset (Sensor_generic) such as 
e.g. the temperature of the department in which the asset 
is installed. The importance to distinguish these two 
inherited classes of Sensor is explained in subsection 3.3. 

3.2 Logical description block 

The logical description block collects all classes and 
relationships that describe the asset functioning. Indeed, 
the Asset must perform a specific Asset_function as it is 
designed; if it cannot perform the function due to a 
breakdown, a Functional_failure happens. For example, 
the asset is no longer able to cut metal. This is named as 
Functional_failure and comes from a failure of one of 
the Maintainable_item, having its own Failure_mode, 
for example cutting tool-head wear. Definition of these 
terms may be found in the ISO 13372. 

Moreover, the Asset has its own Asset_health_state, i.e. 
healthy, degraded, abnormal/faulty, which is influenced 
by the Asset_working_state (see Figure 5). This state is 
described at the beginning by data available from already 
installed sensors or from other elements of automation, as 
PLCs (Programmable Logic Controller); however, the 
working states are updated once the State_detection is 
established, as further specified in subsection 3.5. 

 

Figure 5: Asset_health_state and Asset_working_state 

3.3 Information sources block 

The information sources block collects all classes that 
represent a data or information. A first source is the 
Process_requirement, which is a set of requirements the 
asset must fulfil to respect the production demand. Due 

https://www.mimosa.org/mimosa-osa-cbm/
https://www.omg.org/spec/UML/About-UML/
https://github.com/adalpole/DataModelSummerSchoolFrancescoTurco2020.git
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to the changes in requirements (as changes of production 
mix), the asset must work differently from time to time; 
therefore, the Asset_working_regime is useful to be 
sensitive to these changes. This class is composed 
(through aggregation relationships) by a set of 
Regime_variable as inputs to the asset specific for 
Asset_working_regime. Then, the Regime_variable 
are usually provided to the asset, through CNC 
(Computer Numeric Control) or information systems 
such as a MES (Manufacturing Execution System), and 
represent parameters for its functioning. For example, the 
spindle must rotate at 2500 rpm as a regime variable. 

Data could be also sourced from the Sensor. If sourced 
from Sensor_maintainable_item, the variable is named 
as an Operation_variable; in case of Sensor_generic, it 
is an Environment_variable. Operation_variable is a 
variable measured on the asset, and specifically on a 
maintainable item. This variable could be thought as the 
result of working in a specific regime: the milling machine 
must have a spindle rotating speed of 2500 rpm and so 
the vibration of the spindle is measured, as a result of the 
operation. Environment_variable is a variable measured 
not directly on the asset: this variable could affect the 
functioning of one or more maintainable item and the 
corresponding asset. E.g., the temperature measured in a 
room is not (strictly) the result of the functioning of the 
asset. However, the temperature value may influence the 
precision of micro-operation, as the positioning of the o-
ring to seal a component to prevent fluid leakage. In the 
model, Environment_variable and Regime_variable 
are represented as inheritance of the Context_variable. 
Figure 6 is a conceptual summary of the relationships of 
the three natures of variables discussed so far. 

 

Figure 6: Regime, environment and operation variables 

Through this formalisation, it is possible to improve the 
overall DA approach: context variables allow to describe 
the time-varying working conditions of the asset (Wang et 
al., 2019). In this way, the output represented by the 
operation variable may be recognised, through f, aligned 
with effort required to the asset or unexpected. 

Therefore, the semantic data model helps in providing the 
contextualisation of the variables by labelling them before 
the application of any algorithm: any identified variable 
could help unblinding the kind of needed statistical/ML 
algorithms, by providing a first interpretation of the data 
to be analysed. Also, the semantic data model guarantees 
making evident all data classes and related attributes for 
further analysis; this leads to data quality, with concern to 
data completeness (Tam and Kwan, 2019). 

 

3.4 Value-driven system analysis block 

This block collects the analyses and relative results that 
support the asset-related decision-making. The analyses 
rely upon the identification of the needed variables of 
different natures illustrated in subsection 3.3; this provides 
the starting point for further development by means of 
the potentialities due to several algorithms. 

The first class is the Algorithm_feature_generation that 
allows to generate one or more Feature from the original 
Operation_variable and Context_variable. The correct 
generation of features could be previously requiring a 
proper Algorithm_preprocessing, which may be needed 
for different reasons: there could be outliers or missing 
values in the current dataset (Zhu et al., 2018) (thus the 
need for an Algorithm_preprocessing_data_cleaning), 
or the variables are not yet fused (thus the need for an 
Algorithm_preprocessing_data_fusion). With the term 
“fusion” we intend a methodology that allows to integrate 
(fuse) variables from different sensors and different points 
in time to enable both automated and human analysis or 
decision-making (Khaleghi et al., 2013). 

Once the whole set of features is available, one or more 
Significant_feature must be extrapolated since some of 
the generated features could be correlated. This could be 
done through Algorithm_dimensionality_reduction, 
such as PCA (Principal Components Analysis), that could 
be useful to reduce the feature space, highlighting only 
those features that are significant as they better describe 
the variability of the functioning process under analysis. A 
relevant inheritance of Significant_feature is the class of 
Health_indicator. In practice, a Health_indicator is a 
Significant_feature, but the purposes are different: a 
significant feature is for the State_detection_analysis, 
while the health indicator is a significant feature relevant 
for the Prognosis_analysis. These analyses rely on more 
Algorithm that could be of different types, formalized by 
inheritances, that is: Machine_learning_algorithm type, 
Statistical_algorithm type, Physics_algorithm type (Lei 
et al., 2018). The application of the Algorithm requires to 
evaluate its performance in Evaluation_algorithm. 

3.5 AM decision-making block 

The value-driven system analysis builds the ground for 
implementing the decision-making process in the AM 
decision-making block, fitted in this work for PHM with 
concern to prognosis assessment. Therefore, the 
State_dection_analysis supports the State_detection to 
describe the Asset_working_state; it also supports the 
Novelty_detection (Pimentel et al., 2014), to recognize 
the novelty leading to define the Health_state_division 
which finally allows to describe the Asset_health_state 
enabling to discern healthy, abnormal and faulty. On this 
basis, as decision, a Reactive_action could come out to 
restore the current functioning of Maintainable_item or 
Asset. While supporting the Health_state_division, the 
Prognosis_analysis also provides the computation of the 
Predicted_health_indicator (an Health_indicator 
projected in the future (Lei et al., 2018)); besides, it could 
evaluate the Remaining_useful_life, i.e. a measure of the 
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remaining time the asset has before failing (Si et al., 2011). 
Based on the prognosis outcomes, as decision, a 
Proactive_action could be done on the 
Maintainable_item or Asset. 

4.Proof of Concept in the I4.0Lab 

The I4.0Lab is a laboratory of the School of Management 
of Politecnico di Milano that allows to face industry-like 
problems related to automation, software architecture and 
management. It is a controlled environment in which 
fictitious operations are performed according to a two-
option production routing. For more information refer to 
(Cimino, Negri and Fumagalli, 2019). The I4.0Lab is used 
to develop and improve the semantic data model in 
Section 3, by instantiating its classes to support DA. 

Within the Lab, the drilling station represents one of the 
most critical asset and therefore it is monitored through 
different low-cost sensors (Cattaneo and Macchi, 2019). 
For the sake of shortness, only some of the instances of 
the classes within the physical and logical description 
block are summarised in Table 2. 

Table 2: Some instances of semantic data model for 
physical and logical description blocks 

Class Attribute Instance 

Asset_ 

system 

assetSystemID 

assetSystemName 

assetSystemType 

1 

I4.0Lab 

Assembly sys. 

Asset assetID 

assetName 

assetType 

assetClass 

assetManufacturerName 

1.3 

Drilling stat. 

Automated 

Primary 

Festo 

Main- 

tainable_ 

item 

maintainableItemID 

maintainableItemName 

maintainableItemType 

1.3.1 

Drilling unit 

Primary 

Sensor_ 

main- 

tainable_ 

item 

sensorID 

sensorName 

sensorType 

sensorManufacturerName 

sensorSamplingFreq 

sensorFullScale 

ws32sensor6 

Vibration sens. 

Accelerom. 

Raspberry-Pi 

200 Hz 

- 

There are no generic sensors installed, so they are not 
reported in the above Table 2. 

Table 3 describes some instances of Failure_mode class. 

Table 3: Instances of Failure_mode class 

Class attribute Instance 

failureModeID 

failureModeName 

failureModeEffect 

f5 

tool breakage 

low hole quality 

failureModeID 

failureModeName 

failureModeEffect 

f8 

tool asymmetry 

low hole quality 

failureModeID 

failureModeName 

failureModeEffect 

f12 

handling Z axis 

stop of tool movement 

The function (Asset_function) performed is to realise 
two or four holes on the cover of the product. The 
Functional_failure is the inability to perform the holes. 

The information sources block implies the classes mainly 
related to the outputs of sensors (Operation_variable 
and Environment_variable) or to the inputs to the MES 
(Manufacturing Execution System) that describes the 
Asset_working_regime as a set of parameters carried by 
the Regime_variable. Examples of Operation_variable 
are reported in Table 4, related to vibration measured on 
the drilling unit: their values are saved in an open-source 
document database, named MongoDB (mongodb.com). 

Table 4: Instances of Operation_variable class 

Class attribute Instance 

operationVariableID 

operationVariableName 

operationVariableUnitMeasure 

operationVariableType 

operationVariableValue 

1.3.1.x 

x vibration 

Hz 

waveform 

not reported here 

operationVariableID 

operationVariableName 

operationVariableUnitMeasure 

operationVariableType 

operationVariableValue 

1.3.1.y 

y vibration 

Hz 

waveform 

not reported here 

operationVariableID 

operationVariableName 

operationVariableUnitMeasure 

operationVariableType 

operationVariableValue 

1.3.1.z 

z vibration 

Hz 

waveform 

not reported here 

The regime variables are hidden behind the user interface 
of the MES, while, as anticipated, no environment 
variable is available as relative sensors are missing.  

Now, having fixed physical and logical description, as well 
as the information sources, the DA can start. To this end, 
it is important to specify that the dataset is built for 
drilling station running at Asset_working_regime <1, 
two holes on the left side of the cover>. First, an activity 
of Algorithm_preprocessing_data_fusion is required: 
in our PoC, in fact we face time alignment problems. The 
availability of raw values of the Operation_variable(s) 
allows then the generation of different features 
(Algorithm_feature_generation): Skewness, Kurtosis, 
and mean absolute deviation, among many others. These 
represent instances of the Feature class in the semantic 
data model. 

The PCA (Algorithm_dimensionality_reduction) is 
then applied to retain only one or more 
Significant_features. For the drilling station, the RMS 
(Root Mean Square) is the most significant feature, able to 
describe most of the variability (for the failure mode 
experimented in the case). 

https://www.mongodb.com/
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In decision-making, the State_detection_analysis is then 
performed by means of a Statistical_algorithm, namely 
Statistical Process Control (Bersimis, Psarakis and 
Panaretos, 2007): the State_detection allows to describe 
the Asset_working_state through the RMS only. At this 
step, the Novelty_detection may be implemented using 
different techniques. Different trials are performed and all 
show that there are two health states for the failure mode 
experimented in the case (Health_state_division), based 
on the RMS value. Therefore, the SPC is used, with a 

threshold RMSUp set to be μ + 3σ (Fumagalli et al., 2019). 
If the monitored RMS goes above this limit, a novelty is 
present, and the asset is going towards an abnormal/faulty 
state (see Figure 7). Novelty_detection may then bring to 
a Reactive_action on the maintainable item or asset. 

 
Figure 7: Control chart for RMS for state detection 

The Prognosis_analysis uses Algorithm to forecast a 
Predicted_health_indicator, i.e. the RMS for the drilling 
station, and the Remaining_useful_life. In so doing, it 
contributes to enrich the Health_state_division. More 
specifically, the RMS as the Predicted_health_indicator 
is modelled through the Exponential Degradation Model 
(Gebraeel et al., 2005). 

 

Figure 8: RMS prediction (Cattaneo and Macchi, 2019) 

Remaining_useful_life and Health_state_prediction 
allow to take a decision, that is Proactive_action, on the 
maintainable item or asset to prevent future stops. 

5.Conclusions 

This research work aims at proposing a semantic data 
model that guides DA to support the PHM process. The 
model is developed in UML as main formalism adopted in 
the scientific literature. Data models are in fact used for 
several objectives in maintenance, but mainly for CBM. 
Predictive maintenance has room for improvement and 
this paper is demonstrating a proof. Herein, data 
modelling helps in reaching goals mainly related to data 
contextualisation and completeness to support DA. The 
distinction between operation, environment and regime 
variables is a core part of the model as it provides a 
contextualisation to the available data. Data are 
interpreted before starting the entire DA path, with ML, 

statistical and physics algorithms and, in the authors’ 
experience, this empowers the application of suitable 
algorithms for prediction, also coping with the challenge 
of time-varying operating conditions. Also, the 
formalisation of all the data needed helps in preparing and 
checking data quality, namely supporting the data 
completeness. Overall, the semantic data model provides 
background semantics to DA for PHM. In so doing, the 
model could guide DA to monitor current asset state and 
predict future degradation within the PHM process. 

The main limitation of the built semantic data model is its 
“static” nature. The model must be instantiated manually; 
moreover, the asset or maintainable item states (health 
states and working states) must be defined a priori and the 
results from the DA do not directly influence the model. 
But it would be interesting that the model is able to 
update its classes integrating the new knowledge every 
time this emerges from DA. This barrier could be broken 
through the application of ontology to enable an 
automated (machine-readable) semantic-driven predictive 
maintenance. The extension of the concept of the sematic 
data modelling towards ontology engineering may in fact 
be useful to introduce reasoning capabilities and auto-
update potentialities, supporting DA more proactively 
geared to domain-related knowledge. 
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