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Abstract: In the new paradigm of industry 4.0, one of the open issues is to configure production and logistics systems to meet 
the increasingly customized market demand in a shorter time and at lower cost. It is suitable to implement measures and 
actions to make the production system much more resilient and self-organized to face all adversities. The technologies typical 
of Industry 4.0 help to meet these tasks. In the current era, it is therefore necessary to make even greater use of these tools. 
Considering the increasing interest in AI and the promising results of its application in industrial scenario, this paper proposes 
a new approach in production control using Reinforcement Learning (RL). A literature review is made to highlight the 
potential of RL application in production systems and how it could help in the decision making process. Among the 
applications found in the literature, an emphasis is placed on those specifically related to the world of manufacturing. The 
goal is to train a network to achieve a throughput target, keeping a certain amount of WIP constant on a Flow Shop line. A 
new approach where the state, action space and reward function are formulated. The system performance is compared with 
the known results of an analytical model (Practical Worst Case, PWC). 
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1. Introduction  

The development of AI has now been going on for more 
than half a century and is making great steps towards a new 
phase of growth. Advances in new theories and 
technologies, such as Big Data, supercomputing, sensor 
networks, and data science, have made AI a legitimate 
component of any organization's automation strategy, 
thanks to strong demand and established trends in both 
economic and social terms. Artificial Intelligence, AI, is a 
great opportunity for the development of Industry 4.0. AI 
makes machines capable of performing activities and 
functions that until recently were exclusive to human 
intelligence. It can make a robot or software 'intelligent', i.e. 
able to learn and improve by learning. This is thanks to 
learning algorithms or machine learning. Machine learning 
is a particular branch of computer science that refers to all 
those mechanisms that allow an 'intelligent' machine to 
improve its capabilities and performance over time. 
The strength of machine learning lies in input, big data-
based analysis, and data acquisition. Technically, the subject 
is closely related to computational statistics and probability. 
Therefore, it plays an important role in analysis for the 
optimization of business solutions. Regarding the machine 
learning,  it is implemented mainly as: 

• Supervised learning; 

• Unsupervised learning; 

• Reinforcement learning. 

The first two methods use sets of data, that can be labeled 
or unlabeled, to classify, group, or cluster the samples, to 
make prediction, or to find new patterns. The last one, 
Reinforcement learning (RL), does not have data to work 

on and instead the learning process is made by the 
experience. Another step forward in ML is the 
development of Deep learning (DL), which is a set of 
techniques based on artificial neural networks organized in 
different layers, where each layer calculates the values for 
the next layer so that the information is processed more 
and more completely. Currently the themes of ML, DL and 
RL are widely investigated and implemented in many 
domains, from software computer and videogame (Van 
Hasselt, Guez and Silver, 2016), to tasks typical of the 
manufacturing domain as maintenance (Kuhnle, Jakubik 
and Lanza, 2019), production planning and control and 
fault detection (Xia et al., 2020). The employment of these 
tools have proved the improvement of the performance of 
the overall system, and in addiction they have brought a 
certain self-regulation to the systems that in the 
manufacturing domain can be keystone to accomplish a 
resilient configuration. 

In this paper, we would like to present RL in the domain of 
manufacturing and, in particular, in production control. 
The application of RL permits the automation of adaptive 
decisions, which are very often difficult for people to 
implement. We want to show the potential of this method 
by presenting an example RL model that, following a 
certain configuration (Deep Q-Network, DQN), learns 
how to control a production line to reach a targeted 
throughput level. The Deep reinforcement learning is a 
form of RL that uses deep neural networks for state 
representation and/or function approximation. We choose 
to use RL because it has the learning characteristics of 
humans, i.e. through trial and error it learns which is the 
best set of actions to implement (Sutton and Barto, 2018).  
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The remainder of the paper is set out as follows: Section 2 
has a literature review; Section 3 has the proposed 
approach; Section 4 has the experimental plan executed to 
support the proposal; and lastly, Section 5 closes the work. 

2. Literature review 

Reinforcement Learning (RL) is a field inspired by a 
number of other well-known disciplines that deal with 
decision-making under uncertainty.  

Many studies have been conducted by researchers on the 
implementation of ML, DL and RL in the manufacturing 
domain from the perspective of Industry 4.0 (Wan et al., 
2020). The collection of studies reviewed can be divided 
according to the task in which the AI paradigms are 
involved in. Considering that our proposal is about the 
implementation of the RL-based model in the control of a 
production line, the literature review is conducted in the 
production control domain. Most control systems are 
based on static heuristics and models, which require a lot 
of expertise in the human field and thus do not fit the 
complex environment of manufacturing companies 
(Parente et al., 2020). The scheduling and production 
control problem has been approached in different ways, 
using different types of frameworks and algorithms typical 
of ML. Reinforcement Learning (RL) is one of the 
techniques that could help to achieve a more resilient 
manufacturing system and cope with the complexities of 
manufacturing systems(Kuhnle et al., 2019). RL is one of 
the Machine Learning (ML) systems that has been studied 
in the area of manufacturing control in recent years, along 
with Deep Learning (DL) (Usuga Cadavid et al., 2020). 
Mezzogori, Romagnoli and Zammori, 2020 use the DL to 
predict precisely the delivery date in a make-to-order Job 
Shop managed by a Workload control. To deal with the 
complexity of the production system in the assembly job 
shop, Wang et al., 2020 suggests an RL algorithm called dual 
Q-learning to enhance adaptability to environmental 
changes by self-learning. Wu et al., 2020 suggest a 
combination of deep neural network (DNN) and Markov 
decision process (MDP) for dynamic scheduling of 
recurrent production systems. Thomas et al., 2018 use Deep 
RL to account for uncertainties and achieve online dynamic 
scheduling in chemical production. In addition, a 
comparison is made with known heuristics or analytical 
models to prove the validity of the proposed approaches. 
This is also the case in Hofmann et al., 2020 where the 
performance of the ML-based production schedule is 
compared with the static rule-based approach. The creation 
of a four-stage collaborative RL algorithm that provides a 
roadmap for two non-identical robots for non-identical 
machines is also part of the work by Arviv, Stern and Edan, 
2016. In order to train a self-learning, intelligent, and 
autonomous agent for the decision problem of order 
dispatching in a complex job shop with strict time 
constraints, the authors Altenmüller et al., 2020 use a Q-
learning algorithm in conjunction with a process-based 
discrete-event simulation. The work by Leng et al., 2021 
proposed a loosely-coupled deep reinforcement learning 
(LCDRL) method for individualized Printed Circuit Board 
manufacturing order approval decision in Industry 4.0. In 
Chen, Fang and Tang, 2019, the Cloud Manufacturing 

perspective discusses the RL-based task assignment policy 
to support multi-project scheduling.  

As shown before, it has not been discussed yet the problem 
of managing the throughput (TH) and work in progress 
(WIP) using RL to make the production systems more 
stable and self-controlled.  

To address the problem of controlling a production line to 
overcome what are the issues of manufacturing 
inefficiency, our starting point is the work of Hopp and 
Spearman, 2011. They suggested to monitor Work-In-
Process (WIP) in the system, and secure throughput from 
variance in the perspective of production control. Hopp 
and Spearman (2011) studied the actions of CONWIP 
(CONstant Work In Progress) lines in various scenarios in 
the literature. The scenarios are fascinating because they 
show how a CONWIP production line will work at its best 
or worst. They assess the performance of a production line 
in a real-world scenario in which job working times are 
exponentially distributed among the workstations, 
maintaining a balanced line (the average working time is the 
same for each work phase). The derived laws are 
summarized in Table 1. 

Table 1 Relationship between Cycle time and Throughput(Hopp 

and Spearman, 2011). 

Scenario Cycle Time (CT) Throughput (TH) 

Best Case 𝐶𝑇𝑚𝑖𝑛

=  {

𝑇0     𝑖𝑓 𝑤 ≤ 𝑊0
𝑤

𝑟𝑏
    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝑇𝐻𝑚𝑎𝑥

=  {

𝑤

𝑇0
     𝑖𝑓 𝑤 ≤ 𝑊0

𝑟𝑏       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Worst 
Case 

𝐶𝑇𝑚𝑎𝑥 = 𝑤𝑇0 
𝑇𝐻𝑚𝑖𝑛 =  

1

𝑇0
 

Practical 
Worst-
Case 

𝐶𝑇𝑃𝑊𝐶

=  𝑇0 +
𝑤 − 1

𝑟𝑏
 

𝑇𝐻𝑃𝑊𝐶

=  
𝑤

𝑊0 + 𝑤 − 1
𝑟𝑏 

• 𝑇0 represents the Raw Processing Time of the line (the 
sum of long-term average process time of each 
workstation); 

• 𝑟𝑏 represents the Bottleneck Rate of the line (it is the 
rate of the workstation that have the highest long-term 
utilization); 

• 𝑊0 represents the Critical WIP of the line (it is the WIP 
level for which a line, with a defined Raw Processing 
Time and Bottleneck Rate, achieve the maximum 
throughput and the minimum cycle time without any 
variability). 

So, starting from the hypothesis of PWC, we propose a 
method based on RL paradigm to accomplish the task of 
control a flow-shop line in terms of WIP and TH. 

3. Proposed approach 

Reinforcement Learning is a mathematical formalization of 
a problem involving decision-making. 
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RL is different from other Machine Learning methods 
because it focuses on goal-directed learning from 
interaction. The learning entity is not told what actions to 
take; instead, it must figure out for itself which actions 
result in the greatest reward, or objective, by putting them 
to the test through "trial and error". Furthermore, since 
current actions can decide future scenarios, these actions 
will impact not only the immediate reward but also future 
rewards, referred to as "delayed rewards" (how it happens 
in real life). 

Figure 1 Reinforcement learning logic. 

In RL there are two main components: an agent that has 
the function of making decisions (actions) to solve complex 
decision problems under uncertainty, an environment that 
is a "problem", i.e. everything that comes after the agent's 
decision. The environment responds to and rewards the 
effects of these behaviors, which are observations or states. 
These two core components (Figure 1) are actively 
communicating with each other, so that the agent is trying 
to control the environment through its behavior, and the 
environment is responding to the agent's actions. How the 
environment responds to a particular behavior is 
determined by a model that may or may not be known to 
the agent. There are several strategies for training policies 
to solve tasks with deep reinforcement learning algorithms, 
each with its own set of advantages (Sutton and Barto, 
2018). At the top stage, a distinction exists between model-
based and model-free strengthening learning, which 
indicates whether the algorithm tries to learn a future model 
of the dynamics of the environment.  

In last years was developed a new algorithm called deep Q-
network (DQN) it exploit a classic RL algorithm called Q-
Learning with deep neural network (DNN). This algorithm 
was developed by Mnih et al., 2015. DQN is an RL method 
for function approximation. It is a further development of 
the Q-learning method, in which the state-action 
representation is replaced by a neural network. In this 
algorithm, learning consists in adjusting the weights of the 
neurons composing the network by backpropagation. The 
learning of the value function in the DQN is based on the 
change of the weights depending on the loss function:  

𝐿𝑡 = (E[r +  γ 𝑚𝑎𝑥𝑎Q(𝑠𝑡+1, 𝑎𝑡)] − Q(𝑠𝑡 , 𝑎𝑡))
2
 ; 

where E[r +  γ 𝑚𝑎𝑥𝑎Q(𝑠𝑡+1, 𝑎𝑡)]represents the optimal 

expected reward related to the transition to the state 𝑠𝑡+1 ; 

r is the reward associated with the action 𝑎𝑡 and to the state 

𝑠𝑡 ; γ is the discount factor that is used to balance immediate 

and future reward; while Q(𝑠𝑡 , 𝑎𝑡) is the value estimated by 
the network. The errors computed by the loss function are 
propagated in the network by backpropagation, which 
follows the logic of the gradient descent. In fact, the 
gradient indicates the direction of the largest growth of a 
function, and by moving in the opposite direction, we 
reduce (to the maximum) the error. The behavior of the 
policy is given by an ε-greedy approach to strike a balance 
between exploring new states and exploiting already good 
policies.  

 
Figure 2 Proposed model. 

We propose a model that employs the DQN in the context 
of production control. The control is made on a 5-machine 
Flow Shop production system with a FIFO dispatching rule 
for the jobs (Figure 2). The goal is to teach the system to 
decide by itself the quantity of WIP to keep constant in the 
system to achieve a targeted TH. The proposed system 
consists of a learning agent, which is a deep NN that 
approximates the learning function of RL.  The learning 
agent refers to the entity that connects and learns from the 
environment through observations, actions and rewards. 
The environment is the virtual world in which the learning 
agent acts. As for the behavior, they reflect what the 
learning agent will do in the world. There are only some 
types of action that a learning agent can take depending on 
how much power the environment has (simulation model). 
In order to train the network to meet a certain goal TH, the 
collection of acts performed by the network injects as many 
jobs as possible to keep the WIP constant and reach the 
target TH at the same time.  

The learning agent takes as input the observation of the 
state of the system, then a reward is calculated according to 
which the system will evolve to other states of the system 
in order to maximize the total reward. So the issue in this 
kind of problem is how to model the state, the reward and 
the set of possible action in order to describe the real 
system at its best. The issue of how to model the state in a 
RL approach has been investigated in Shi, Guo and Song, 
2021. In this work the state is modelled in accordance to 
the feature of the system we want to control. So the 
following factors are considered: the completion time of 

the job on the first machine (𝑐𝑇𝑀1), the WIP on each 
machine, the initial total WIP in the system at each time 

step, and the current throughput in the line (𝑇𝐻𝑀𝑜𝑏𝑖𝑙𝑒). 
The number of possible actions refers to the assessment of 
the number of orders to be placed in the system for 
achieving the throughput target. In order to achieve the set 
goal, a certain amount of job is injected into the system. 
This includes 10 potential actions: injecting 0 jobs when the 
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machines must discharge WIP; then injecting 1 job, 2 jobs 
etc. after the assessment, until 9 jobs. The reward is 
validation from the environment that helps to reinforce or 
punish the actions of the learning agent. This is expressed 
as a number, and it affects the way the learning agent 
chooses its actions. The reward function was chosen with 
the goal of receiving a reward of 1 when the TH system 

approaches the 𝑇𝐻𝑡𝑎𝑟𝑔𝑒𝑡 . The reward is given according to 

the distance of the current TH of the line and the target, 
the model gives a reward equals to 1 when the difference is 
smaller than 0.05 as we want to punish the situation in 
which the throughput is far away from the target because 
this would mean that or the system is not satisfying the 
production plan. The current throughput is  measured 
using a mobile time window of 240 minutes. 

 

 

𝑟𝑒𝑤𝑎𝑟𝑑: 𝑅𝑡 = {
  1  𝑖𝑓 |𝑇𝐻𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑇𝐻𝑀𝑜𝑏𝑖𝑙𝑒| < 0.05

0                                                       𝑒𝑙𝑠𝑒
; 

A learned policy is produced after training. The policy 
developed during the training experiment would monitor 
the flow shop in terms of WIP and TH. The aim of the 
training experiment is to teach an artificial neural network 
how to operate a flow shop. It would do this by learning a 
strategy that, depending on the current state of the system, 
better governs the TH and WIP of the production line. The 
learner is not told which actions to perform, but must try 
them all to see which give the best results. 

The time chosen for decision-making is 50 minutes, which 

is the raw time of line 𝑇0, and the policy uses an observation 
of the model to estimate the appropriate response on the 
basis of the observations during training.  

4. Experimental approach 

To try the consideration made before a simulation model 
has been implemented in Anylogic, the multi-method 
simulation software, with the framework called rl4j 
(Reinforcement Learning for Java) that is integrated into 
the library DeepLearning4J. The environment of the RL is 
modelled as a discrete event simulation model (Figure 2), 
the observations of the state are the input layer of the DNN 
and it has 8 nodes. The action set is the output layer with a 
number of nodes equal to the number of possible actions 
in the model (10). The overall structure of the network is a 
simple, fully connected, feed-forward network with 2 
hidden layers composed of 300 nodes. 

The hyperparameter values used were chosen based on the 
scientific literature and the characteristics of our problem. 

The learning rate is 0.001, the discount factor γ equals to 

0.99 (Patterson, 2016).The "L2" regularization algorithm is 
used, which applies a term to the objective function that 
reduces the squared weights. Regularization is a method to 
prevent overfitting. L2 increases generalization, smooths 
model performance on input transitions, and helps the 
network ignore weights it does not need (Patterson, 2016). 
RMSProp (for Root Mean Square Propagation) is used as a 
gradient-ascent algorithm, it is a method in which the 
learning rate is adapted for each of the parameters in the 
network.  

The jobs that are processed in the system are modeled as 
agents with a basic state diagram (queue-work state-final 
state), and their processing time is expressed as a gamma 
distribution with a value of α=1, so an exponential 
distribution with a mean of 10 minutes. 

In order to allow interaction between the model and the RL 
system, the required functions are used in the simulation 
model. There are thus two further functions in the Anylogic 
model: one for observation and one for action. The reward 
function is determined in the training experiment on the 
basis of the model's post-action measurements.  

In this work the simulations are made to verify how good 
the employment of DQN is in the control of WIP and TH 
time. To measure the performance, we consider the mean 

error 𝑇𝐻𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑇𝐻𝑀𝑜𝑏𝑖𝑙𝑒 , the standard deviation of it 

and the mean WIP in the production line.  

The simulations are made with two settings, one using the 
DQN and the other considering the hypothesis of the 
Practical Worst Case. To hit a steady-state of the 
production process, the simulation runs for two years. The 
throughput target is set to 4 unit/hour. 

 

Figure 3 Histogram of the mean error and standard deviation 

with DQN. 

 

Figure 4 Histogram of the mean WIP with DQN. 
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The DQN model gives us a mean error of 0.09, a standard 
deviation of 0.7 and a mean WIP of 6.69 (Figure 5).  

Figure 5 Histogram of the mean error and standard deviation 

PWC. 

Comparing the results of the simulation model with the 
setting and the hypothesis of the PWC the results are: mean 
error of 0.01, a standard deviation of 0.71 and a mean WIP 
of 8 (Figure 6).  

 

 

Figure 6 Histogram of mean WIP PWC. 

Considering the system's average WIP, we can see that, 
while it is 6.68, the histogram(Figure 4 ) shows that, the 
frequency with which the system chooses to reach a WIP 
value of 8 (WIP of the PWC) is greater than the other. Since 
the overall results are so close to each other, in terms of 
mean error and standard deviation, we can say that the 
system integrated with the DQN learns the analytical law 
of the practical worst case without being taught it.  

5. Conclusions  

This work proposed to control the features of a 5-machine 
flow shop production line. The task is accomplished  with 
an algorithm typical of the RL combined with the deep 
neural network, DQN. First of all, we have given the 
scientific context in which we are moving, examining the 
most significant works in the scientific literature for the 
treatment of our problem. then, in order to give a better 
understanding of the proposed model, we have described 
the most relevant characteristics. The data set is not 
previously established, but is collected using a simulation 
method. a description was given of how the state was 
modelled, the set of actions and how the reward is 
calculated. then the simulative tool was presented which 
allowed us to prove that the use of AI tools can teach the 
system to self-regulate and achieve the performance of 
analytical models found in literature (PWC). Given the high 
uncertainty of the experimented case, the findings of the 
proposed solution are promising. In the future, a deeper 
focus on how detailed the modeling of the state in respect 
to the problem studied will be analyzed. In addition, in 

future developments we want the experimental set to be 
expanded and some simulation parameters to vary in order 
to validate the proposed tool and perhaps compare it with 
more complicated algorithms. 
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