
XXVIII Summer School “Francesco Turco” – « Blue, Resilient & Sustainable Supply Chain » 

A digital twin for spare parts supply 
chain planning and control 

Sirri G.*, Accorsi R., Bartolotti G., Ferrari E., Manzini R., Ronzoni M. 

Department of Industrial Engineering, Alma Mater Studiorum – University of Bologna, Viale del Risorgimento 2, 
40136 – Bologna – Italy 

(gabriele.sirri4@unibo.it, riccardo.accorsi2@unibo.it, giorgia.bartolotti2@unibo.it, emilio.ferrari@unibo.it, 
riccardo.manzini@unibo.it, michele.ronzoni2@unibo.it) 

Abstract: Geopolitical crises, raw materials shortage, the COVID-19 outbreak, and social and economic disruptions 
have significantly and unpredictably affected the supply chains’ performance. Managing a wide variety of 
products, as well as the relationships with different suppliers and customers spread worldwide, have become more 
challenging, especially for companies operating with global and extremely complex supply chains. With its high 
service level requirements, the spare parts supply chain has been one of the most affected. This paper aims to 
introduce a digital twin system to support spare parts planning and control through a cost- and reliability-based 
model design. The proposed model minimizes the overall supply chain cost, including holding cost, power 
consumption for material handling, stock-out risk, and sale loss probability. This model aids decision-makers in 
managing spare parts inventory and controlling customers’ service level under uncertainty. The digital twin is 
applied to a case study of an Italian automatic packaging machine company to support decision-makers on spare 
parts decisions. 
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I. INTRODUCTION AND STATE OF THE ART 
Many industries depend on the availability of high-
value capital assets to provide their services or to 
manufacture their products. Spare part management 
is vital to many capital-intensive businesses, 
directly impacting the availability of high-value 
capital assets, essential to the operational processes 
[1]. Therefore, one factor determining the criticality 
of a spare part is the lead time of supply [2], which 
can be deeply affected by severe supply chain 
disruptions such as political conflicts, natural 
disasters, economic crises, and the COVID-19 
pandemic [3,4]. Large supply lead time can result 
in:  

1. lost revenues (e.g., stand-still of machines 
in a production environment); 

2. customer dissatisfaction and possible 
associated claims (e.g., in airlines and 
public transportation); 

3. public safety hazard (e.g., military settings 
and power plants). 

Concerning different actors, the spare parts supply 
chain (SPSC) comprises different needs. Final 
customers want to respect their maintenance plans 
to avoid production loss, while suppliers and 
manufacturers pursue reducing the total supply 

chain cost for spare parts management. The 
challenge for a comprehensive and effective tool for 
SPSC management is the union of these two 
perspectives. Such an instrument aims to satisfy the 
spare parts demand, guaranteeing on-time 
deliveries, maintaining a high customer service 
level, suggesting a spare parts inventory 
management plan, and reducing the total supply 
chain cost. Therefore, finding the optimal setting for 
spare parts planning and control has become a major 
goal in order to simultaneously reduce costs and 
improve customer service in today’s increasingly 
competitive business environment. 

The literature presents several approaches to assess 
spare parts planning and control. [5] proposed a 
simple forecasting mechanism in order to estimate 
the spare part demand using the maintenance plan. 
Their models are applied to a real-world aircraft 
case study, producing cost savings if compared to 
traditional methods. Albeit the model application 
shows cost reduction, the information needed to 
feed such models makes this theory unfeasible for 
capillary SPSC. [6] proposed an innovative EOQ 
model linked to the material lot size analyzed from 
the beginning to the end of the order life. In 
particular, internal and external transportation costs, 
supplier location, and the different freight vehicle 
utilization ratio are considered in order to provide 
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an easy-to-use methodology. [7] proposed a 
simulation-based modeling methodology to support 
the decision-making process related to the SPSC 
and maintenance operations in manufacturing 
systems. The use of a digital twin for SPSC 
performance evaluation is not widely covered in the 
literature, as shown by [8].  

The literature relating to digital twin design 
currently offers limited insights into the approach 
required for their design. It often focuses on a 
relatively small physical entity [9], e.g., a 
manufacturing cell, rather than an entire factory or 
site. In order to cover this literature gap, the 
presented paper aims to introduce a digital twin 
(DT) to support spare parts planning and control in 
complex production systems subjected to corrective 
and preventive maintenance actions. The proposed 
DT adopts an original cost-based and reliability-
based model that helps decision-makers identify the 
best inventory level per each stock-keeping unit. 
The proposed solution minimizes the total supply 
chain cost, including handling, logistics, and stock-
out contributions.  

The presented DT deals with the spare parts 
production and purchasing process, its lead time 
variability (i.e., “supply level”), and the sale-to-
customer process (i.e., “demand level”). The 
statistical analysis of both purchasing orders and 
customers’ orders of spare parts is devoted to 
quantifying the expected probability of some 
critical occurrences corresponding to logistics and 
operational events, such as the stock-out, the 
shipment delay, and the loss of customer orders.  

The reliability-based model embedded in the DT 
combines statistical analyses on order quantity and 
supply lead time with reorder cycle theory, as 
shown in [10]. In such a theory, different 
variabilities are taken into account: 

1. purchasing and production variability 
(“supply level”); 

2. demand variability in time and quantity 
(“demand level”). 

This study suggests some empirical, statistical, and 
reliability-based analyses to support supply chain 
performance assessment through a set of KPIs and 
the representation by a visual dashboard. 
Considering the entire supply chain of spare parts 
(i.e., from the supplier/manufacturer to the end 
user), and using cost-based and reliability-based 
models, the presented DT stands out from the other 
works mentioned in the literature. 

The remainder of the paper is organized as follows. 
Section II introduces the DT and describes the 
proposed model structure and the levels of analysis. 
Section III presents an application to a case study of 
an Italian packaging machine company. Finally, 
section IV reports the conclusions and some 
directions for further research. 

II. METHODS AND MATERIALS 
Figure 1 illustrates the data-driven approach and the 
conceptual framework that hosts the proposed 
model and DT for spare parts planning and control. 

 
Figure 1. DT schema and data-driven approach 

The corporate data repository gathers information 
from several data sources, including both supply 
and demand perspectives. A time window selection 
provides the data entry for the DT. However, the 
time window width varies the number of production 
and purchase orders (PPOs), sales orders (SOs), and 
stock-keeping units involved, affecting data entry 
dimension and results effectiveness. 

The proposed DT allows the SPSC performance 
analysis by adopting empirical, statistical, and 
reliability-based approaches. The study of customer 
service levels and on-time delivery rates (empirical 
approach) enables the analysis of how the SPSC 
responds to the unpredictability of customers’ 
demand and supply/purchasing lead time. The 
statistical approach accounts for the control of late 
deliveries and stock-out risks. It is based on the 
actual reorder cycle lead time (RCLT) statistical 
distribution and the introduction of a specific 
statistical variable named safety cover (SC).  

A cost-based and reliability-based model combines 
the empirical and statistical approaches into a 
reliability-based analysis. The model exploits both 
SC and RCLT to generate a reorder cycle daily cost 
function whose minimization produces the optimal 
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SC value for each component and the expected 
stock-out risk. 

As a result, the combination of these approaches 
supports the optimal setting for an advanced spare 
parts planning system. 

Finally, charts, KPIs, and results from empirical, 
statistical, and reliability-based analyses are 
collected into a visual dashboard that helps 
decision-makers control SPSC performance. An in-
depth illustration of each approach is reported 
below. 

A. Empirical approach 
The empirical study of actual SO quantities, lead 
times, and the comparison with their expected 
values support the company in targeting the most 
problematic components and supply chains. Also, 
analyzing actual PPO quantities, lead times, and 
expected values enhances the visibility of supply 
chain uncertainties. 

B. Statistical approach 
The study of actual RCLT statistical distribution 
supports a statistical approach for spare parts 
management and deepens supply chain variability 
comprehension. In particular, RCLT statistical 
distribution analysis provides the risk of observing 
a supply lead time higher than expected for each 
supplier and component. However, the statistical 
variable SC is designed to combine the supply and 
demand levels, conveying the variability of PPO 
lead time, SO lead time, and SO quantity. Thus, SC 
considers the minimal quantity of inventory to keep 
in stock in correspondence with the emission of a 
PPO to avoid stock-out during the supply lead time. 
Therefore, as shown in Figure 2, the SC related to a 
specific reorder cycle represents the sum of the SO 
quantities that occurred during its lead time. For 
instance, during the first RCLT, two SOs appeared 
(SO1 and SO2) with a demand of one and three 
pieces, respectively. Keeping four pieces in stock at 
the PPO emission (Te

1) would have prevented stock-
out with the lowest possible starting inventory. 

Given a historical horizon time, applying the 
probability plot to the observed values of SC per 
each component and reorder cycle gives decision-
makers effective statistical tools to control the risk 
of stock-out [11]. The density function adopted to 
conduct the statistical analyses of RCLT and SC 
historical values is the 2-parameter Weibull 
distribution. The Weibull distribution scale (λ) and 
shape (k) parameters convey a feature behavior, 
setting the position, skewness, and shape of its 
probability density function. A k value lower than 1 

means a random behavior expressed by an 
exponential distribution, whereas higher values 
represent log-normal distributions. 

 
Figure 2. Safety cover representation; (Legend: Qi: customer demand 
in period i; Te

i: i-th PPO emission date; Td
i: i-th PPO delivery date; 

SOj: j-th sales order; SCi: required safety cover for i-th PPO.) 

The study of SC statistical distribution responds to 
the unpredictability of both lead time and demand, 
producing the risk of stock-out at any inventory 
level. Therefore, RCLT and SC statistical 
distribution feed the proposed cost-based model, 
introducing the DT reliability-based approach. 

C. Reliability-based approach 
The proposed empirical and statistical analyses 
provide the basis for the cost-based and reliability-
based model. For this purpose, early supply 
probability and stock-out risk must be expressed in 
economic terms. For what concerns early deliveries, 
an additional inventory cost is generated as the 
received material needs to be kept in stock before 
moving to the customer. This cost represents the 
daily costs incurred by the company for additional 
warehousing and material handling, including: 

1. Structure cost (i.e., rental fee, depreciation, 
maintenance, general equipment, 
insurance, and supervisory cost); 

2. Energy cost (i.e., energy and gas 
consumption cost); 

3. Labor cost (i.e., handling and logistics 
cost). 

Rather, stock-outs result in sales delays, generating 
a service level reduction. The generated delay can 
be quantified by defining a stock-out unit cost as the 
combination of the following contributions: 

1. daily depreciation of a profit delay;  
2. daily cost for a sales order loss; 
3. daily cost for a customer loss. 

The cost-based and reliability-based model defines 
a reorder cycle daily cost function by combining the 
above costs with the probability of early and late 
supply deliveries provided by the RCLT statistical 
distribution. On-time supply delivery has a different 
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impact on the total supply chain cost, as an early 
delivery produces additional inventory costs, while 
a late delivery generates stock-out costs. However, 
the magnitude of these costs depends on the SC 
value, as a greater inventory level reduces the size 
and the risk of stock-out, despite an increase in 
inventory cost. 

Since SC represents a decision variable for the spare 
parts company, the model conveys a parametric 
approach to the DT, producing the expected daily 
supply chain cost for the single spare parts at 
different values of SC. Therefore, this cost 
comprises the following three contributions:  

1. C1, the average stock-out cost in case of a 
late supply delivery; 

2. C2, the average additional inventory cost 
due to an early supply delivery; 

3. C3, the inventory cost related to the 
perfectly on-time supply delivery. 

As a result, the model identifies the minimum 
expected cost per component, providing the 
corresponding SC value and stock-out risk. Hence, 
the DT suggests decision-makers with the best 
inventory level to maintain in stock when emitting 
a PPO, balancing customers’ needs and supply 
chain costs. 

D. Visual dashboard and KPIs 
A visual dashboard is proposed to help the SPSC 
performance assessment, supporting spare parts 
planning and control. In addition to the reorder 
cycle daily cost function and stock-out risk, a visual 
representation of SC and RCLT is illustrated in a 
diagram named Shangahi chart (Figure 3). The 
graph comprises two sections. 

1. An empirical section provides a chart for 
the SC-RCLT pairs observed in the selected 
historical horizon time. This representation 
helps highlight the geopolitical, social, and 
economic contingencies affecting SPSC, 
allowing a dynamic analysis through a 
rolling time selection. For instance, Figure 
3 reports the effects of raw material 
availability issues on a specific spare part. 
While the oldest observations (displayed 
with a lighter color in the chart) tend to 
present short supply lead times, the most 
recent ones (represented with a darker 
color) are affected in the production of 
spare parts by delays, showing a shift to the 
right on the x-axis. In addition, a 
contemporary growth in customer demand 

leads to superior SC values, increasing 
management complexity. 

2. The statistical section of the graph 
comprises the SC and RCLT probability 
density function distribution, f(SC) and 
g(RCLT) respectively. Selecting a specific 
SC value for f(SC) (e.g., 𝑆𝑆𝑆𝑆� ) identifies the 
stock-out risk as the right-hand-side red 
area below the curve. Similarly, g(RCLT) 
provides the risk of a late supply delivery at 
any RCLT (e.g., 𝑅𝑅𝑅𝑅�𝐿𝐿𝐿𝐿). 

 
Figure 3. Example of a Shanghai chart 

The proposed dashboard also includes a numerical 
section, providing a wide set of empirical, 
statistical, and reliability-based KPIs, e.g., the 
observed number of PPOs and SOs, the actual and 
expected lead times, the SC and RCLT Weibull 
parameters, the average RCLT, the risk of a late 
supply, the on-time delivery rate, the minimum 
reorder cycle daily cost, the optimal SC suggested 
by the cost- and reliability-based model, and the 
related stock-out risk. 

III. CASE STUDY AND RESULTS 
This section presents the DT application to a case 
study of an Italian automatic packaging machine 
company that operates with a global network of 
suppliers, serving more than 100 countries. Since 
the large number and variety of machines sold and 
spread worldwide, spare parts management 
represents a crucial business for the company, 
counting over 300,000 different components and 
more than 32,000 PPOs and 195,000 SOs per year. 

Figure 4 outlines the DT visual dashboard generated 
for a single component. The selected time window 
refers to the supply and sales data from January 
2020 to February 2023. The spare part is produced 
by a single manufacturer and supplied to customers 
in 15 different countries worldwide for a total of 97 
pieces demanded in three years. This data set 
comprises 13 purchasing orders and 40 SOs for the 
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component, providing 11 SC-RCLT pairs visually 
illustrated by the Shanghai graph in the top-right 
section of Figure 4. 

The visual section of the dashboard also displays the 
SC and RCLT probability density functions. Their 
Weibull distributions report a shape parameter of 
1.44 and 2.12 respectively, conveying a log-normal 
trend. Therefore, given an expected supply lead 
time of 65 days, the estimated risk of late delivery 
is 54.1%. The company succeeded in customers’ 
deliveries in 17.2 days on average, showing a 60% 
on-time delivery rate. 

The dashboard also reports the graph for the reorder 
cycle daily cost function and its corresponding 
expected stock-out risk, identifying 16 pieces as the 
optimal SC, with a 13.3% stock-out risk. The total 
supply chain cost minimization results in 2.16 
€/day, with stock-out costs (i.e., C1) accounting for 
25% and additional inventory costs (i.e., C2) for 
32%. However, while the total supply chain cost is 
not subjected to a significant variation with growing 
levels of SC, the corresponding stock-out risk 
witnesses a relevant reduction. An increase of five 
product units over the optimal SC value reduces the 
stock-out risk to 5% and generates an additional cost 
of about 7% (0.15 €/day). 

Given a generic spare part, the optimal SC 
represents the inventory level corresponding to the 
reorder level in a reorder point inventory system or 

the reorder quantity in a push-based inventory 
system (e.g., the Material Requirement Planning). 

The proposed DT and cost-based model support 
decision-makers in statistically controlling the 
expected risk and cost generated within the supply 
chain. 

IV. DISCUSSIONS AND CONCLUSIONS 
The complexity and importance of SPSCs require 
tailored tools in order to evaluate their performance 
and control their behavior. For this purpose, the 
paper introduces a DT to support spare parts 
planning and control in complex production 
systems subjected to corrective and preventive 
maintenance actions. An application is presented in 
Section III, providing a visual dashboard and 
several KPIs to account for SPSC performance from 
supply and demand perspectives. 

A historical data rolling time analysis can outline 
the effects of geopolitical crises, raw materials 
shortage, the COVID-19 outbreak, and social and 
economic disruptions. An example is reported in 
Figure 5, where the supply on-time delivery rate and 
the optimal SC proposed by the model are compared 
in a three-month rolling analysis. 

The supply on-time delivery rate decreases from 
73.3% (i.e., T1, January 2017 – February 2020) to 
53.8% (i.e., T13, January 2020 – February 2023), 
showing significant reductions in correspondence 

Figure 4. Visual dashboard produced for a single SKU 
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with the Russia-Ukraine conflict outbreak (i.e., 
observation T8). The corresponding optimal SC 
proposed by the model presents an increasing trend 
(+78%) due to the higher uncertainties affecting the 
supply chain. 

 
Figure 5. Rolling time analysis result 

The proposed DT provides a data-driven and 
reliability-based approach to support spare parts 
management for each product individually. Further 
developments are required to define a more general 
spare part planning, looking at the whole set of 
components as a single entity and providing a wider 
view of the company. The perspectives embedded 
into the model can also be expanded to include the 
production cost at the manufacturer’s site and the 
stand-still of customers’ machines. 
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