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Abstract: Work related musculoskeletal disorders (WMDs) are common in industrial activities and their impacts 

on society are not negligible. To reduce them recently some motion capture technologies (MOCAP) are applied 

to semi automatically calculate the ergonomic risk to which operators are subjected. In this paper we present an 

industrial case study where an application based on a depth camera, the new Azure Kinect, is exploited to semi-

automatically calculate the ergonomic risk involved in picking activities. The case study took place in a 

warehouse and regarded three different activities. The semi-automatic evaluation of the ergonomic risk 

highlighted some criticalities on how picking activities are carried out. For this reason, some modifications of the 

activities are proposed and tested revealing a statistically significant ergonomic risk reduction. 
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I. INTRODUCTION 

These instructions are intended to provide the basic 

guidelines for preparing papers for the XXVII 

Summer School "Francesco Turco". Please use this 

document as a template to compose your 

manuscript or as an instruction set. Recently, a new 

industrial revolution was theorized named Industry 5.0 

[1]. This revolution was conceptualized in order to 

cover the main drawbacks of Industry 4.0. Industry 4.0 

which goals regard the achievement of higher efficiency 

and productivity of production system with high level of 

automation [2]. In addition, under Industry 4.0 the 

concept of smart manufacturing was introduced 

representing a interconnected production system able to 

achieve mass production using emerging technologies 

[3][4]. However, necessities to go beyond Industry 4.0 

emerged in three different aspects: human centricity, the 

system resilience and environmental sustainability [5]. 

In particular, human centricity was neglected in Industry 

4.0 where the full automation principle guided 

production choices [6]. But even if within the full 

automation principle many manual tasks have been 

automatize contributing in a continuous improvement of 

working conditions many tasks are still difficult to 

automate [7]. This is due to the fact that is still arduous 

for robots to learn soft skill and to acquire experience 

even if they are becoming more and more autonomous 

as well as collaborative [8]. For these reasons, most of 

the task performed by human operators are short and 

repetitive [9]. These task’s characteristics favour Work 

Related Musculoskeletal Disorders (WMSDs) [10]. 

WMSDs have been defined as ”All musculoskeletal 

disorders that are induced or aggravated by work and 

the circumstances of its performance” [11]. In Europe, 

has depicted in the 6th European Working Conditions 

Survey [12], repetitive hand and arm movements are 

widely diffused and reported by 3 workers over 5. A 

similar situation arises in the US where 31.4% of the 

days away from work are caused by WMSDs [13]. 

Obviously, WMSDs have an associated economic 

impact which was estimated to be about 20 million/year 

only for direct costs in the US [14]. While indirect costs 

of WMSDs can be up to five times the direct ones and 

comprehend for example the hiring and training of new 

workers [15]. In addition, the increasing aging in the 

workforce is putting pressure on the need to reduce 

WMSDs. In fact, in several developed countries aging 

workforce is predominant  [16] requiring specific tools 

for the management of their comfort [17] and to reduce 

the ergonomic risk to which there are subjected. For the 

scope specific policies have to be applied trying to 

minimize the risks of WMSDs [18]. The initial phase of 

these policies regards the assessment of this risk 

exposure. Then, ergonomic interventions should be 

designed to reduce the assessed risk if present like 

workstation or task re-design [19]. Here in this paper, 

we propose both the assessment of risk exposure in 

picking activities in a real warehouse and the re-design 

of most critical task analysed. Specifically, for the risk 

assessment we applied a recent application based on the 

last depth camera of Microsoft, the Azure Kinect [20], 

named AzKNIOSH [21] to semiautomatically calculate 

the ergonomic risk in picking activities. In fact, recently 
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many applications based on different sensors were 

proposed to automatize the ergonomic risk assessment 

[22] thanks to technology evolutions. This introduction 

took place to overcome the main drawbacks of classical 

ergonomic assessment. Three methods are available in 

literature to carry out the ergonomic assessment and are:  

self-reports, direct measurements, and observational 

methods [23]. The first class of methods are naturally 

affected by subjectivity [24] that is absent in direct 

methods where sensors are attached to the worker’s 

body. At the same time, sensors have some drawback 

characteristics: are usually expensive and highly 

intrusive [25]. For these reason direct methods are not 

exploited in industrial environments but only in a design 

phase carried out in laboratory setting [26]. 

Observational methods are the most exploited by 

ergonomic practitioners [27]. Among these methods the 

most common are: Rapid Upper Limb Assessment 

(RULA) [28], Rapid Entire Body Assessment (REBA) 

[29], NIOSH lifting equation [30], Strain Index [31], 

Ovaco Working posture Analysing System (OWAS) 

[32] and the concise exposure index (OCRA) [33]. 

Despite their diffusion all these methods suffer of the 

same limitations: an ergonomic practitioner has to 

perform a time-consuming video analysis. Results of 

this video analysis have low accuracy and a high intra 

and inter observer variability. To overcame these 

limitations recently in literature many research 

integrated different MOCAP technologies to automatize 

and objectivize the ergonomic assessment. In this study, 

we utilized an application based on Azure Kinect to 

semi-automatically calculate the NIOSH lifting equation 

[34] in a real case study at a drug warehouse. The 

purpose was to determine the risk level of the analysed 

task using the Lifting Index (LI). LI measures the extent 

to which a task places excessive stress or strain on the 

human body, especially the back. The application takes 

into account factors such as the weight of the load and 

the distance it is lifted to calculate the LI value. This 

value serves as an indicator of the task's risk level: LI 

below 1 indicates a low risk level within acceptable 

ergonomic limits, while an LI greater than 1 suggests an 

existing risk, implying a higher likelihood of injury or 

strain. The paper is structured as follows: Section 2 

provides a literature review on MOCAP technologies 

applied to ergonomic risk assessment, Section 3 

presents our case study and related results while in 

Section 4 we stated our conclusions as well as further 

research agenda. 

II. LITERATURE REVIEW 

The growing interest on MOCAP applied to 
ergonomic assessment is demonstrated by the recent 
reviews published on the theme to which we refer 
for an in-depth analysis of the theme. In fact, in [35] 
authors proposed a systematic review of MOCAP 
applied to ergonomic assessment while in [36] 
authors focused on applications of Kinects to 
ergonomic assessment in material handling 

operations both in industrial case study and in 
laboratory setting. MOCAPs can be divided into 
sensors based and optical ones. As already stated 
sensors based applications are intrusive and 
exploited mainly in laboratory setting as reviewed in 
[37]. While optical ones are more easily applied in 
industrial environments even if suffer of occlusions 
problems [38]. Most exploited cameras to conduct 
ergonomic assessment are Kinects [36]. The first 
Kinect generation named Kinect V1 was firstly 
exploited in [39] for posture estimation in 
construction site. The first Kinect was also exploited 
in [40] to calculate OWAS with a good agreement 
with an ergonomic expert. Then, after the 
introduction of Kinect V2 which was able to truck 
more joints with an higher accuracy, researchers 
started using this new technology. In fact, in [22] 
authors proposed a semi-automatic calculation of the 
RULA index based on Kinect v2 finding an high 
agreement on 15 static posture between the 
proposed applications, an ergonomic practitioner, an 
optical system and a commercial software based on 
wearable sensors. Similarly, in [41] a substantial 
agreement was found between an ergonomic expert 
and RULA extracted from Kinect v2 data both in 
laboratory and real working environments. To lower 
occlusions in [9] authors proposed a Motion Analysis 
System (MAS) made up of four different Kinect v2. 
Occlusions problems that were also individuated in 
[42] where Kinect v2 was tested against an optical 
marked based system and wearable sensors. Results 
of their study shown the instability of RULA index 
provided by Kinect v2 in case of occlusions while 
they found that Kinect can be used in real working 
environment without several occlusion. Similar 
conclusions were found in [43] where authors found 
a fair to moderate agreement between the RULA 
score provided by Kinect V2 and by a MAS system 
made up of 8 Vicon cameras developed to overcame 
occlusions issue. The last Kinect generation, called 
Azure Kinect, was demonstrated to outperform the 
previous versions in different aspects: number of 
joints tracked, repeatability and in body 
segmentation when the narrow field-of-view depth 
mode (NFOV) is used [44]. However, Azure Kinect 
was applied is in [45] where authors compare the 
RULA score calculated with Azure Kinect data with 
an ergonomic expert and a machine vision algorithm 
based on simple RGB data finding a good agreement 
over the same 15 static postures proposed in [22]. At 
the same time, in [21] authors proposed a 
semiautomatic calculation of the NIOSH lifting 
equation based on the Azure Kinect. Here we 
exploited the same application named AzKNIOSH 
to calculate the ergonomic risk in picking activities 
carried out in a real industrial case study. 
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III. CASE STUDY 

We tested AzKNIOSH, for semi-automatic 

calculation of NIOSH through Azure Kinect data, 

in an industrial environment. Specifically, the case 

study took place in a warehouse, where drugs are 

stored to be delivered to hospitals. Workplace 

characteristics are optimal to our scope because 

manual handling of loads accounts for most actions 

performed by operators.  Three different activities 

were analysed with AzKNIOSH: 

1. Picking for shipping rolls preparation. 

2. Picking for material sorting. 

3. Picking for automatic warehouse supply.  

Azure Kinect settings during all the acquisitions 

were the following: color mode set On 720p; depth 

mode set On NFOV_2X2BINNED; no depth 

delays; 15 frames per second; IMU set ON; 

external sync Standalone; sync delay set 0; auto 

exposure and auto gain.  

 

A. Activity 1: picking for shipping rolls 

preparation. 

In the first activity, picking for shipping rolls 

preparations, an operator picks up from the rollers 

a box to place it on the shipping pallet. This task 

has the following characteristic: 2 operators on 

each shift; each shift duration is of 8 hours; the 

average weight of each box is of 4 kg; box 

dimension is 55 x 38 x 25 cm; 6 lifts are analysed, 

one for each level created on the pallet; boxes are 

picked up from a height of 50 cm and 110 cm from 

the ground. 

Each pallet contains 24 boxes, placed on 6 height 

levels, as shown in Figure 1 while Figure 2 show 

an example of the analysed postures for the first 

activity. 

 

Figure 1. Graphical representation of the boxes on the pallet 

 

 

Figure 2. Graphical representation of the boxes on the pallet 

Through AzKNIOSH we obtained Lifting Index 

for the frame when the lift starts and the frame 

when the lift stops. These frames of interest were 

manually identified by watching the acquisitions. 

We obtained two LI for each lift, but AzKNIOSH 

chooses the maximum LI to classify the risk of the 

picking. The average LI is 1.90, with a maximum 

of 2.22 and a minimum of 1.51, as shown in Figure 

3 where red lines shown risk level limits: activity 

is considered risky with LI>1 and there are 

different risk levels according to the LI. Lifting 

performed during activity 1 are in the first and 

second level.  

 

Figure 3. LI in first picking activity 

B. Activity 2: picking for material sorting 

Second activity is composed of three sub tasks:  

1. Picking up an empty box to place it at a 

comfortable height. 

2. Picking up materials to refill boxes. 

3. Picking of box to place it on a pallet. 

 Sub tasks sequencing is shown in Fig.4. 
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Figure 4. Graphic representation of sub-tasks. 

This activity has the following characteristic: 2 

operators on each shift; each shift duration is of 8 

hours; the average weight of each box is of 6 kg; 

box dimension is 59 x 40 x 27 cm; 6 lifts are 

analyzed, one for each level created on the pallet; 

boxes are picked up from a height of 80 cm from 

the ground. We analyzed 16 sub-tasks, and we 

obtained the following results: the average LI is 

0.71 with a maximum of 1.39 and a minimum of 

0.17. 

 

Figure 5.  Lifting Index calculated for activity 2. 

C. Activity 3: Picking for automatic warehouse 

supply. 

Third activity scope is to supply automatic 

warehouse with boxes refilled during activity 2. An 

operator picks up boxes from different levels on 

the pallet, as shown in Figure 1, and leaves them 

on the roller.  

This activity has the following characteristic: 2 

operators on each shift; each shift duration is of 8 

hours; the average weight of each box is of 6 kg; 

box dimension is 59 x 40 x 27 cm; 6 lifts are 

analysed, one for each level created on the pallet; 

boxes are picked up from a height of 100 cm from 

the ground. 

During the testing we proposed an improvement 

solution to make more comfortable the placement 

of the box on the roller. An industrial trolley was 

placed near the roller to extend it facilizing the 

task. In Figure 6 the activity 3 is shown. In Figure 

7 the comparison with the improved solution is 

shown.  

 

 

Figure 6. Analyzed postures of the operators during picking automatic 

warehouse supply, an example. 

 

Figure 7. Analyzed postures of the operators during picking automatic 

warehouse supply, an example. 

There is an overall average improvement of the 

Lifting Index of 22% if the task is performed with 

the industrial trolley. We also carried out an 

ANOVA test on LI calculated for two 

configurations to statistically validate their 

difference. We obtained a p-value of 0.02 that 

statistically confirms the reduction of LI obtained 

with the usage of an industrial trolley. 

D. Activity 3: Picking for automatic warehouse 

supply. 

The implementation of semi-automatic ergonomic 

risk assessment through AzKNIOSH tool in 

industrial environment produced the following 

results: 

1. Activity 1 is the riskiest activity, with a 

maximum LI of 2.22. Each analyzed lift in this 

task is classified as risky. 

2. Activity 2 Lifting Index has only 2 risky peaks 

with a maximum of 1.39. 

3. Activity 3 is a safe task with or without the 

usage of industrial trolley that undoubtedly 

facilitate the action.  
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Here we propose some comprehensive 

considerations of the activities. The first one is 

related to the horizontal distance from the operator 

to the box location on pallets: when the box is 

located on the pallet in Position 2 (Figure 8) it 

could be too far for the operator who must lean 

forward, increasing considerably the risk.  In fact, 

we demonstrated it with ANOVA test where 18 

lifts were analyzed: in 9 lifts box is picked up from 

Position 1 and in 9 lifts box is picked up from 

Position 2. We applied the ANOVA test on these 

two groups from which we obtained a p-value of 

2,78 E-06. So, we can affirm that the risk is higher 

when the box is in Position 2. Specifically, we 

calculated the average of LI for the two different 

populations considered for ANOVA test, and we 

obtained an LI greater than 43% if box is in 

Position 2. 

 

Figure 8. Graphical representation of the positioning of the boxes on 

the pallet. 

Each pallet contains 24 boxes, with 6 vertical 

levels. This means that the height from which 

boxes are picked has a wide range. Specifically, 

the maximum vertical level is 170 cm from the 

ground, the minimum one is 45 cm from the 

ground. Our analysis confirms that Level 1 and 

Level 6 (Figure 1) can be inconvenient and 

hazardous to reach.  

To make activity safe and comfortable for the 

operators, we propose two solutions: 

1. Greater spacing between pallets to allow 

operators to get as close as possible to boxes 

locations. In this way operators can always pick 

the boxes from Position 1. Figure 9 shows the 

proposed layout. 

2. Overlapping two pallets to elevate the lowest 

box in Level 1 and discard using Level 6. In this 

way, boxes vertical distances from the ground will 

be safer. A graphical representation of the 

proposed solution is shown in Figure 10. 

 

Figure 9. Graphical representation of the positioning of the pallets in 

the new proposed layout. 

 

Figure 10.  Graphical representation of the positioning of the boxes on 

the pallet with new layout 

 

IV. CONCLUSION 

In this paper we proposed a case study of an 

application based on the new Azure Kinect to 

semi-automatically assess the risk involved in 

picking activities through the calculation of the 

NIOSH lifting equation. The case study regards a 

drug warehouse where picking activities are 

prevalent. We analysed three different activities 

and one of them showed a critical risk for each lift 

taken under consideration. To reduce the said risk, 

we proposed three modifications statistically 

testing two of them to demonstrate their 

advantages finding an average risk reduction of 

22% and of 43%. Future research in this direction 

can include a complete re-design of the three 

activities carried out in laboratory environments 

with the help of wearable sensors. 
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