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Abstract: The technical and economic performance of renewable energy systems is affected by the uncertainty and 

variability of many influencing factors, including the inherent uncertainty in the availability of energy sources and 

in the economic context as well as equipment availability. Traditional design and evaluation methods are based on 

the assumption of average nominal values of design parameters. This prevents technical and economic risk 

assessment, which is a central issue in the proper design of these systems. Software tools and some contributions 

on this topic are available in the literature, but only a few sources of uncertainty are considered. In a previous 

work, a framework for evaluating the economic performance of offshore wind power systems considering the main 

sources of uncertainty was proposed, but the implemented model neglected the uncertainty related to changes in 

the political and regulatory scenario during system life. To fill this gap, in this paper the random discontinuities 

arising from this kind of risk are included in a new economic performance assessment model using scenarios 

analysis. Widely accepted scenarios for energy price, learning rate and subsidies were taken from the literature 

and combined into consistent stories for the life of the plant. Simulations were carried out on a case study. The 

main results show the crucial role of this type of uncertainty for a correct economic risk assessment in wind power 

systems. From the best-case scenario to the worst-case scenario there is a difference of about 290% in the expected 

value of NPV. In addition, several scenarios were combined to assess a single net present value distribution using 

their associated probability. Several scenarios on increasing or decreasing subsidies were defined, and an example 

was carried on. Considering a constant value of subsidies, instead of combining different plausible stories, led to 

an overestimation of NPV of about 160%. 
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I. INTRODUCTION 

Renewable energy power systems (RESs) play a 

central role in the decarbonization strategy, and 

energy transition policies represent one of the main 

actions to counteract climate change and to achieve 

energy independence. While the cost of electricity 

produced by RESs has become competitive with, or 

lower than, that produced from fossil sources, RESs 

suffer the effect of many aleatory and epistemic 

uncertainties which affect systems profitability and 

increase investment and financial risk (Apak et al., 

2011). Wind power systems are a typical example 

and are the focus of this paper. Onshore wind power 

is a proven technology and the effect of the 

variability of wind speed and sales price, and the 

random failures is well known (Carroll et al., 2016; 

Faulstich et al., 2011; Shafiee and Sørensen, 2019). 

The impact on the economic and technical 

performance of onshore systems of disruptive 

external events due to natural and man-made 

hazards, and of the imprecise turbine design 

relationships is also well-known. Some software 

tools for performance assessment of onshore wind 

power systems (HOMER; RETScreen; System 

Advisor Model) are available in literature and have 

been reviewed by (Tozzi and Jo, 2017). 

Nevertheless, most of the existing tools consider 

only few sources of uncertainty recurring to 

sensitivity analysis. However, the case of offshore 

wind power plants is different as similar studies 

focusing on the effects of uncertainty and variability 

are lacking. A recent model has been developed to 

evaluate the economic performance of this type of 

plants, considering both epistemic and random 

uncertainty to estimate a probability density 

function of the NPV (Caputo et al., 2023). 

Nevertheless, another possible source of uncertainty 

for RESs comes from changes in the political and 

regulatory scenario during the life of the system. 

This important issue has been neglected in the 

literature. To fill this gap, in this work the 

previously available model (Caputo et al., 2023) is 

extended by including scenario analysis. Several 

widely accepted scenarios related to energy price 

history, learning rate of offshore wind power 
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systems and subsidies policy are taken from the 

literature, and they are combined to include this 

additional kind of risk. 

The paper is organized as follows. Firstly, the model 

used for the economic and technical performance 

assessment is shortly described. Next, the 

considered scenarios are exposed, and their 

combinations are explained. Subsequently, a 

numerical example is carried out to show the 

relevance of considering scenarios for the correct 

economic evaluation. Finally, given the probability 

of occurrence of four scenarios in which subsidies 

change during the system life, a single NPV 

probability distribution is assessed and compared to 

a single scenario in which subsidies are constant 

during the years to underline the importance of 

considering these discontinuities. 

II. GENERAL FRAMEWORK 

The general framework of the model (Fig. 1) is 

based on a modular structure in which blocks can be 

activated and switched off to cope whit different 

sources of uncertainty. 

 

Fig. 1. General framework for economic performance evaluation of 

renewable energy system 

For wind power systems the considered sources of 

uncertainty are resumed in Table I. In the Table the 

variability type is classified as follows (see Fig. 2). 

I) the variables change randomly their value over 

time, II) variables show a constant but random value 

according to predefined probability density 

function, III) variability is represented by random 

occurrence of point events of either known and 

unknown intensity, and IV) a random discontinuity 

occurs where one or more variables experience a 

random step change in value at a random time.  

 

Fig. 2. Classification of variables affected by uncertainty 

In essence, a Monte Carlo analysis method is used, 

simulating a series of random occurrences of the 

system life over a predetermined number of 

iterations. First, a location and wind turbine are 

selected by the user. The program data set is filled 

with the technical features of the turbine and 

environmental data.  

TABLE I. SOURCES OF UNCERTAINTIES 

Variable Uncertainty nature/ 

Variability type 

Modelling 

approach 

Bank interest rate E/II 1 

Investment cost E/II “ 

Plant nominal life E/II “ 

Self interest rate E/II “ 

Power coefficient E/II “ 

Gear box efficiency E/II “ 

Generator efficiency 

curve 

E/II 2 

Power electronic 
efficiency curve 

E/II “ 

Number of required 

maintenance personnel 

E/II “ 

Repair costs E/II “ 

Disruptive external 

events 

A/I 3 

Components failures A/III 4 

Wind speed A/I 5 

Electricity price A/I 6 

Legend. E = Epistemic, A = Aleatory; 1= Monte Carlo sampling from 
predefined pdf; 2= Monte Carlo sampling from predefined pdf centered 

on nominal performance curve; 3= Monte Carlo sampling from hazard 

curve and random generation of failure severity level from fragility 
curve; 4= Monte Carlo sampling of Time to failure pdf and Monte Carlo 

sampling of time to repair pdf; 5= Markov chain; 6= ARIMA time 

series 
 

The simulation is launched after declaring the 

number of runs, projected system life years, and all 

other constant input data. In each run the value of 

variables subject to epistemic uncertainty is derived 

by sampling the relevant probability distributions 

throughout each cycle. Then, through simulation of 

the corresponding stochastic processes, annual time 

series of failures, wind speed, and electricity prices 

are produced. This makes it possible to calculate the 

annual net produced energy neglecting downtime 

periods. Then, using the economic model, the 

annual cash flows and the Net Present Value (NPV) 

are calculated obtaining the NPV frequency 

distribution histogram. Below each block of the 

framework is shortly described, and in Fig. 3 the 

main steps of NPV distribution computational 

sequence are resumed. External parameters random 

uncertainty of the technical model represents 

mainly the wind speed and direction variability. 

External parameters random uncertainty of the 

technical model represents mainly the wind speed 

and direction variability. External parameters 
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random uncertainty of the technical model 

represents mainly the wind speed and direction 

variability. 

 

Fig. 3. Main steps of NPV distribution computational sequence 

Even if in the literature the usual approach is to 

recur to Weibull probability distribution sampling 

built on historical data (Ajayi et al., 2014; Kwon, 

2010; Ulgen and Hepbasli, 2002), this method leads 

to abrupt changes in the speed and direction values. 

For this reason, in this work a Markov chain is 

adopted according to (Negra et al., 2008) to generate 

hourly wind speed time series  over the entire plant 

life. External disruptive random events (e.g., 

terrorism acts, collision with ships, earthquakes, 

rogue waves etc.) are modelled according to (Huang 

et al., 2011). A library of fragility curves and 

expected damage can be constructed for each type 

of event or taken from literature (Chaudhari and 

Somala, 2022; Lee et al., 2013; Martin del Campo 

et al., 2021; Mo et al., 2017; Wei et al., 2015). A list 

of disruptive event date, magnitude, and expected 

damage is generated as described in (Caputo et al., 

2023). The technical and reliability model allows to 

compute the power extracted by a horizontal axis 

wind turbine given the instantaneous wind velocity 

value (Mathew, 2006). The internal parameters 

epistemic uncertainty resides in the efficiency of 

components and model simplifications. This type of 

uncertainty is modelled sampling a value on a 

probability density function build around the central 

value of the quantities and bounded by their 

maximum and minimum values. The wind turbine 

is decomposed into components and subassemblies 

according to (Tavner, 2012). Components are 

assumed to be in series, so when a single element 

fails, the whole system fails and production stops 

until it is brought back into service. An event list of 

failures throughout the life of the system is 

generated resorting to Monte Carlo sampling of the 

distributions of the mean time between failures, 

mean time to repair, mean number of technicians, 

and expected restoration cost of each different 

components and subassemblies. The economic 

model performs cost computation and revenue 

computation, including cost items (CI) resumed in 

Table II, while repair cost of failures is calculated 

multiplying hourly cost of technicians by recovery 

time and required number of technicians, also 

adding materials cost taken from (Carroll et al., 

2016). 

TABLE II. COST MODEL ITEMS 

CI Sub-items Source 

Investment 

cost 

Wind turbine and floating platform 

purchase  

[6, 9, 19]  

 Wind turbine and floating platform 

installation and rent of the shipyard 
[6, 19]  

Operating 

cost 

Grid access fees, insurance costs, 

and seabed rental 

[5, 19] 

 Maintenance cost (preventive) [9, 19] 

 Maintenance cost (corrective) See text  

 Investment cost computation are subject to 

epistemic uncertainty that arise from the 

relationships used. Its value is sampled from a 

probability distribution built on its computed 

expected value. Revenues are computed by 

multiplying the hourly produced power, and the 

hourly energy price, obviously neglecting the 

downtime periods. Market risk is mainly accounted 

for through the hourly energy price that is modelled 

starting from historical time series used as input to 

perform a regression and obtain coefficients of an 

ARIMA model. These parameters are used to 

simulate 1000 paths for each run and the middle 

time series is taken from the set and used for 

revenue computation of the current run. Financial 

risk is modelled using Monte Carlo sampling from 

a predefined probability density function of plant 

nominal life and bank investment cost. Tax risk, 

social risk, and political and regulatory risk were not 

included in the original model (Caputo et al., 2023). 

To include these types of risk, in this paper, scenario 

analysis is performed as described in the next 

section. Risk assessment consists in the NPV 

probability density function computation, and in the 

assessment of the probability to obtain an expected 

value of NPV lower than 0, the Value at Risk (VaR), 

which is fixed at the beginning of the simulation, 

and the NPV coefficient of variation. 

III. SCENARIOS DESCRIPTION 

Scenarios were selected to model tax, social, cost, 

and market risk during a long time-period. To 

evaluate cost reduction effects over the years, it was 
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assumed that the plant, including a single wind 

generator, starts its production in 2030. Twenty-one 

scenarios were built starting from three distinct 

scenarios forecasting separately energy price 

evolution in time, three different subsidies policy 

and three investment cost reduction. Starting from 

(IEA, 2022), energy price scenarios were 

constructed according to (Schmitt and Zhou, 2022). 

Three scenarios were chosen, namely Relief (R), 

Central (C), and Tension (T). Beyond traditional 

energy market driver, in the analysis the geopolitical 

situation was included. Scenario R assumes that 

relationship between USA, Europe, Russia, and 

China will ease off again in the next years, 

continuing imports fossil fuel from Russian 

pipeline, leading to a reduction in the energy price. 

Anyway, the reduction of dependence on Russia 

will continue, so less natural gas is imported than 

before 2021. Recently adopted targets for 

renewables are kept in place. In C scenario Europe 

stops importing Russian pipeline gas by 2027 and 

renewable resources utilization smoothly increases 

in next years. Natural gas will be replaced by 

synthetic fuels, e.g. green hydrogen. To continue 

power generation from natural gas, its price will fall 

to remain competitive. In addition, there will be an 

increase of heat pump utilization and by 2060 

electric vehicles and trucks in Europe increases to 

95%. In T scenario current tension between Russian 

and the West continues and intensifies in coming 

years, leading to energy price increasing. Europe 

stops the imports of Russian pipeline gas 

immediately and European consumers are 

competing with Asian markets. Investment cost 

reduction is modelled resorting to offshore wind 

power learning rate (Fortes et al., 2015; Shields et 

al., 2022). This data are combined with scenarios 

about the offshore wind power installed capacity in 

Europe in 2030 (Nghiem and Pineda, 2017), 

obtaining three scenarios, namely High Investment 

Cost Reduction (H), Medium Investment Cost 

Reduction (M), and Low Investment Cost 

Reduction (L). The higher is the installed capacity 

in 2030, the higher is the percentage of reduction of 

the investment cost. Learning rate is considered 

fixed at value of 9 %, whereas installed capacity in 

2030 can be 40.5, 70.2, 98.93 GW according to L, 

M, and H scenarios. These values are linked to 

energy economy development in next years. In L 

scenario no significant progress is made in 

electricity interconnections between European 

states, unfavorable national policies for permitting 

and planning in high potential markets persists, and 

the European renewable energy target is not 

achieved. In M scenario regional cooperation 

mechanisms are established, renewable energy 

directive is implemented, and national policies for 

wind energy are boosted. In addition, power 

interconnection infrastructures are intensified. In H 

scenario European targets for RES is increased to 

35%, power transmission network is intensified 

beyond the target of 15%, and an acceleration in 

new installation is achieved, due to the favorable 

policies of member states. Even though at the time 

of this study there are not subsidies for offshore 

wind power plants, Italian government is thinking 

about a plan for subsidies introduction. Three 

scenarios are thus considered, namely feed in tariff 

(F), feed in premium tariff (P), and no subsidies (N). 

Due to the lack of data, feed in tariff was set on 187 

€/MWh, according to the historical levelized cost of 

energy for offshore wind power systems  (Lecca et 

al., 2017). In this scenario the time series of 

electricity price has no influence on NPV, because 

the power produced is sold at a fixed price. Feed in 

premium tariff is fixed on 31 €/MWh. In this case 

the selling price are calculated adding to the current 

market price of energy the feed in premium value. 

In no subsidies scenario the selling price is the 

current energy market price. As it is clear, the 

selected scenarios are strictly related to cash flows 

(scenarios T, C, R, F, P, N), in particular to 

revenues, but also to investment cost (scenarios H, 

M, L). Scenarios belonging to the same group are 

mutually exclusive, so there are three levels of three 

different variables. For that reason, doing all the 

admissible permutation, the resulting total number 

of scenarios is twenty-one. This happens because, 

as previously said, if Feed In Tariff subsidy is 

selected, there is no influence of energy price on the 

NPV probability density function, but the influence 

of investment cost reduction still holds. Energy 

price scenarios and investment cost scenarios are 

based on the European energy scenarios for 2050, 

but whereas the driver of the former is the 

relationship between West and East countries, the 

main driver of the latter resides in internal policy of 

European member states. Instead, subsidies 

scenarios are mainly influenced by Italian internal 

policy. These assumptions allow to assume the 

independence of different variable evolution and 

determine the admissibility of all the permutations. 

Each scenario is represented by two or three letters 

corresponding to the evolution story of the 

associated variables.  

IV. NUMERICAL EXAMPLE  

Model is implemented in Matlab environment and 

the wind power system consists in a single wind 

generator. The wind turbine (WT) is a horizontal 
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axis NREL 5-MW reference wind turbine (Jonkman 

et al., 2009) located 5 kilometers off the port of 

Brindisi, Italy at coordinates latitude 40.68, 

longitude 18.06 degrees. The water depth is about 

400 meters, so the WT is installed on a SPAR 

platform, and it is equipped with a geared drive 

train, and it is pitch regulated. The hub height is 90 

meters and the rotor diameter 126 m. From 

(Jonkman et al., 2009) are taken all technical model 

data to estimate technic performance and from 

(Castro-Santos, 2013) all structural and 

construction data of the floating platform to assess 

costs, which are adjusted to the present value 

resorting to current EU producer price index. The 

resulting expected investment cost is then reduced 

according to the three scenarios H, M, L of about 

12%, 17%, and 23% respectively. The hourly time 

series of wind speed at 10 meters from 2015 to 2019 

were taken from ERA5 database. Time series are 

used to set the transition rate of the Markov chain 

that is used to generate the values of wind speed. 

Wind speed is adjusted to the hub height resorting 

to a log law. To estimate the ARIMA parameters for 

the hourly energy price time series generation, data 

were taken from Italian Power Exchange database, 

and they refer to 2021. In this way the behaviour of 

hourly energy price is captured and then it is 

adjusted according to the mean of three scenarios R, 

C, T of 60 €/MWh, 79 €/MWh, and 100 €/MWh and 

reduced or increased with the yearly corrective 

trend coefficient of each scenario. Data on failure 

rate, average repair time, average cost, and average 

number of technicians aggregated for main 

components and damage level were taken from 

(Carroll et al., 2016) and used to build failures 

events list. These data refer to 2-4 MW wind 

turbine, so the values of restoration cost were 

increased by 10% to account for the bigger size of 

WT and adjusted with the European Producer Price 

Index. Disruptive events were neglected, because 

the very low probability and considering the 

selected floating structure type and the presence of 

a single turbine. Epistemic uncertainty is modelled 

with Monte Carlo sampling from a triangular 

distribution centred on the nominal value of the 

considered variable and with the minimum and 

maximum value calculated subtracting and adding a 

given percentage PD of the nominal value. In Table 

III nominal values and percentage PD of variables 

affected by epistemic uncertainty, according to 

(Fingersh et al., 2006; Poore and Lettenmaier, 2003)  

are shown. Bank interest rate and self interest rate 

are respectively (6±4)% and (4±2)%. Financial loan 

years is 10, percentual of financed investment cost 

50%, tax rate 35%, technicians hourly cost 50 €/h, 

and yearly percentage of amortization is 7%.  

TABLE III. PARAMETERS FOR VARIABLES AFFECTED BY EPISTEMIC 

UNCERTAINTY 

Variable Nominal value PD 

Power coefficient [15] ±1% 

Generator efficiency [15] ±1% 

Power electronic efficiency [15] ±1% 

Gearbox efficiency 98% ±1% 

Restoration cost [4] ±10% 

Investment cost 10,500,500 € (Computed 

by the model) 
±30% 

Plant years life 20 (Nominal) ±10% 

A. Scenario analysis 

For each scenario 1000 runs were performed and the 

expected value of NPV and its minimum and 

maximum values are shown in Fig. 4. Table IV 

shows the expected values (E), the standard 

deviations (σ), and the coefficients of variation 

(CV) of different scenarios. As can be seen, only 

feed in tariff guarantees an expected value of NPV 

higher than 0, mainly for two reasons. Firstly, 

energy price scenarios provide for a significant 

decreasing of mean energy price in next years in 

comparison with the mean value of the end of 2021 

and 2022. Moreover, the feed in premium tariff 

value is not enough to obtain a sufficient revenue to 

cover the investment and operating cost. Secondly, 

system under analyses is designed with only one 

wind generator, thus losing the economies of scale 

effect associated to wind farms but allowing to 

avoid wake effect and isolating uncertainty 

propagation effect. In addition, even though in Italy 

the first offshore wind power systems installation 

attempts are ongoing, all available current offshore 

wind turbines are designed to operate in higher wind 

speed conditions of about 11.4 m/s, whereas in the 

chosen site the mean is about 5-6 m/s which is 

typical of Mediterranean sea conditions. This 

significantly impairs the turbine generation 

capability when its actual power coefficient curve is 

considered. Anyway, the aim of this work is not to 

determine the cost effectiveness of this type of 

system in a specific application, but to assess the 

relevance of considering social, political, and 

regulatory risk with scenario analysis. From the 

best-case, that is Higher Investment Cost reduction 

combined with Feed In tariff (HF), to the worst-case 

scenario, i.e. Low Investment Cost reduction, Relief 

energy price and no subsidies scenario (LR), there 

is a difference in the mean value of NPV of about 

291%, passing from 4.21 M€ to -8.05 M€.  Even if 

assess a probability of scenarios is a challenging 
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task, to help decision makers in selecting the more 

plausible scenario, we try to give a critical 

contribution resorting to plausibility cone concept 

(Hancock and Bezold, 1994; Taylor, 1990). We 

divided the assumed scenarios in four groups: 

preferable, possible, plausible, and probable. 

Although from wind power investor perspective 

scenario HF, MF, and LF are obviously preferable 

scenarios they are not in the probable group. In fact, 

subsidies policy around the world is heading 

towards a feed in premium tariff. Anyway, scenario 

LF is the more plausible in this set of three, as the 

regulator may adopt a more effective subsidies 

policy if the investment cost reduction is lower. 

Daily news about geopolitical situation depicts a 

non-relief scenario between West and Est countries, 

so all scenarios with take relief assumptions (R) are 

only possible. Other scenarios with no subsidies (N) 

are plausible, but Italian politician seemed to want 

to pursuit a subsidies policy, especially for wind and 

solar energy. Therefore, scenarios with feed in 

premium subsidies are in the probable group. 

Finally, considering the continuous investment in 

all the world, and in Europe, in wind power system 

the high investment cost reduction is the most 

probable. Thus, in our opinion, HTP and HCP are 

the couple of most probable futures. 

B. Scenario combination 

The big weakness of scenario analysis is the 

decision-making problem under deep uncertainty 

that arise from the lack of probability assigned to 

scenarios. Although to assess a probability of a 

scenario occurrence is a difficult matter, there are 

some variables for which this probability could be 

defined. For example, political interest and opinion 

on RESs can be analyzed to assume the evolution of 

subsidies policy. Resorting to the claims of 

European and Italian governments on RESs and 

wind power technology expected developments, 

four different stories on subsidies policy 

development were assumed, and simulation results 

were combined using their associate probability to 

obtain a single NPV probability density function 

(HTPS scenario). Firstly, the NPV probability 

density function of each scenario is assessed, then 

they are multiplied by their associated probability 

and finally summed together. The life of plant was 

divided in six timespans, and for each one a 

percentage of change in Feed In Premium tariff 

value was assigned, as listed in Table V. 

For each scenario 1000 runs were performed, and 

results were compared with the case in which no 

changing in subsidies policy is experimented during 

the system life. The consistent basis for comparison 

is the scenario HTP. Results show that considering 

a constant value of subsidies, instead of combining 

different plausible stories, led to an overestimation 

of NPV of about 158%, changing from -1.18 M€ to 

-0.46 M€. 

V. CONCLUSION 

In this paper an attempt is made to address a gap 

existing in the literature pertaining to RESs 

economic assessment which neglects risk of 

scenario changes. We consider social, political, and 

regulatory risk in an overall framework for 

uncertainty propagation in the economic assessment 

of offshore wind energy systems. Widely adopted 

scenarios on energy price, investment cost 

reduction, and subsidies policy were merged in 

order to build more complex and complete scenarios 

Code HF MF LF HR MR LR HC MC LC HT MT LT HRP MRP LRP HCP MCP LCP HTP MTP LTP 

E 

[M€] 
4.21 3.31 2.60 6.43 7.68 8.05 5.06 6.06 6.58 2.78 3.67 4.69 4.02 5.09 5.30 2.16 3.58 3.83 0.46 1.37 1.86 

σ 

[M€] 
1.44 1.55 1.59 1.39 1.32 1.52 1.40 1.56 1.54 1.35 1.48 1.62 1.31 1.49 1.56 1.43 1.42 1.64 1.41 1.53 1.52 

CV 0.34 0.47 0.61 0.22 0.17 0.19 0.28 0.26 0.23 0.48 0.4 0.34 0.32 0.29 0.29 0.66 0.40 0.43 3.09 1.11 0.82 

                      

TABLE V. PERCENTAGE OF CHANGE IN FEED IN PREMIUM 

TARIFF VALUE FOR EACH SCENARIOS AND THEIR 

ASSOCIATE PROBABILITY 

Probability  Timespan 

 1 2 3 4 5 6 

35% 0% 0% 0% 0% 0% 0% 

5% 5% 10% 15% 20% 25% 25% 

20% -5% -30% -50% -60% -70% -70% 

40% 0% 0% -70% -70% -70% -70% 

Fig. 4 Expected value of net present value in different scenarios 

TABLE IV. EXPECTED VALUE, STANDARD DEVIATION,  AND COEFFICIENT OF VARIATION OF THE NPV ACROSS DIFFERENT 

SCENARIOS (NEGATIVE VALUES OF NPV ARE IN ITALIC, POSITIVE VALUES OF NPV ARE IN BOLD) 
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to increase the number of considered sources of 

uncertainty. A numerical example is carried out to 

show the relevance of scenario analysis. Results 

show that there is a difference in the expected value 

of NPV between the best-case to worst-case 

scenario of about 290% and of about 160% when 

scenario variability is included. Overall, this work, 

offers the possibility to achieve a better risk 

estimation of offshore wind power system 

investments. In addition, it demonstrates the 

relevance of considering scenarios analysis to 

obtain a better assessment of NPV probability 

density function. Even if scenario forecasting is an 

art by itself, and we do not claim that our analysis is 

exhaustive, we showed that changes in the external 

scenarios including legal, social and economic 

parameters may significantly affect the profitability 

of renewable energy systems, and offshore wind 

power in particular. Therefore, scenario analysis, 

which is usually neglected in the economic 

evaluation should be given due attention. The 

current model at present is limited to a single wind 

turbine and it will be extended to wind farm to 

consider wake effects due to variability of wind 

direction and including economy of scale effects in 

capital investment. In addition, also disruptive 

events will be included.  
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