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Abstract: The reduction of energy consumption in manufacturing industries has become a primary focus, driven by increased 

environmental awareness and the introduction of European Directives. Adopting energy-saving solutions can not only reduce 

environmental impact but also enhance production performance. A prevalent strategy for achieving higher energy efficiency 

involves the replacement of outdated technologies within production plants. This approach is widely adopted across various 

industrial sectors; however, selecting the most appropriate technology is a complex task due to the vast array of solutions 

available in the market. Multi-Criteria Decision-Making (MCDM) methods can be employed to address this challenge, but the 

choice of a suitable MCDM tool is crucial, as different tools may yield varying results. Additionally, MCDM approaches 

typically necessitate expert elicitation, which often entails integration with Fuzzy Set Theory (FST) to manage subjectivity and 

uncertainty arising from expert judgments. It is essential to appropriately aggregate differing expert opinions, considering both 

the importance of each expert and the consensus among them. This paper proposes an integrated MCDM framework that 

combines a robust approach for aggregating expert opinions. We achieve this by combining the fuzzy Technique for Order of 

Preference by Similarity to Ideal Solution (TOPSIS) and fuzzy VlseKriterijumska Optimizacija I Kompromisno Resenje 

(VIKOR) methods, offering increased flexibility for users. Simultaneously, the improved Similarity Aggregation Method 

(SAM) is employed to aggregate the opinions of various experts, taking into account the degree of consensus. The developed 

framework is demonstrated through a case study of a cement plant, and it can be utilized to identify the most suitable technology 

for a given enterprise. 
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I. INTRODUCTION 

Reducing energy consumption in manufacturing 

industries has progressively become more important. The 

former trend is related to the growth of environmental 

awareness and the introduction of new regulations  [1], 

such as European Directives. In this context, the 

introduction of new technologies plays a pivotal role [2], 

indeed, it can contribute to both reducing the 

environmental impact and improving the performance of 

a manufacturing plant. As a matter of fact, the 

replacement of old equipment with newer and more 

efficient ones is one of the most common strategies 

adopted in different industrial sectors such as the foundry 

[3] and the cement industry [4]. However, the market 

offers a wide variety of technological alternatives and the 

best energy-saving solution is strongly related to the 

priorities of each firm [5]. Accordingly, identifying the 

technology towards which directing efforts and 

investments could be regarded as a difficult task.  

To deal with the complexity of decision-making related 

to sustainability evaluations, Multi-Criteria Decision-

Making (MCDM) methods have become quite popular, 

being deemed as appropriate thanks to their flexibility 

[6]. Indeed, MCDM approaches facilitate the decision 

makers in comparing different alternatives with respect 

to different criteria of analysis [7]. Moreover, MCDM 

methodologies could exploit as input both quantitative 

and qualitative data. Considering the latter, experts or 

different decision makers could be involved in the 

analysis to express their opinions on a given topic (e.g., 

the importance of a criterion). Since expert opinions 

come with uncertainty and subjectivity, MDCD is often 

integrated with Fuzzy Set Theory (FST), providing more 

realistic, sensitive, and concrete results [8]. Moreover, 

experts could provide different or even conflicting 

opinions, leading to the requirement of aggregating them. 

Considering fuzzy MCDM, the aggregation of expert 

opinions is often treated with the simple average, the 

weighted average, or the minimum and maximum 

functions. The weighted average could include the 

importance of each expert, however, the agreement 

among experts is disregarded by all the former 

approaches. On the other hand, the Similarity 
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Aggregation Method (SAM) can also consider the expert 

agreement, but its adoption in MCDM context is still 

scarce. 

In the context of MCDM methods, several different 

approaches can be found. Examples include Analytic 

Hierarchy Process (AHP), Technique for Order of 

Preference by Similarity to Ideal Solution (TOPSIS), 

VlseKriterijumska Optimizacija I Kompromisno Resenje 

(VIKOR), Preference Ranking Organization Method for 

Enrichment Evaluations (PROMEETHEE), and 

ELimination Et Choix Traduisant la REalité trois 

(ELECTRE III). Therefore, choosing the proper MCDM 

approach is a complex task [9], and the adoption of 

different methods could lead to different results [10]. 

Based on the previous considerations, this paper aims to 

propose an integration between an improved version of 

SAM and two fuzzy MCDM methods (i.e., TOPSIS and 

VIKOR) for selecting the most suitable energy-saving 

solution. The improved SAM allows considering the 

consensus among different experts, while the adoption of 

both TOPSIS and VIKOR would provide the decision 

makers higher flexibility. 

The remainder of this paper is organised as follows; 

Section II presents the literature review on various 

MCDM approaches and aggregation methods, while 

Section III summarises the considered approaches. In 

Section IV the framework is described, while in Section 

V, the application of the framework to a case study is 

illustrated. Finally, Section VI contains the discussion, 

while Section VII reports the conclusions.  

II. LITERATURE REVIEW 

Literature offers a wide variety of MCDM methods, each 

of which may come with a specific set of advantages and 

disadvantages [11]. For instance, AHP is a simple 

process thanks to pairwise comparisons. However, it 

could be characterised by a high number of pairwise 

comparisons in case of large-scale problems [12]. 

ELECTRE allows to handle ill-structured data and add 

new criteria at any step of the analysis, but it is a complex 

[13]  and time-consuming [14] process, and it provides a 

partial ranking of alternatives [15]. PROMETHEE 

presents similar advantages to ELECTRE with a smaller 

computational effort, but it is unable to provide a perfect 

ranking of the alternatives [15]. On the other hand, 

TOPSIS is a simple process, but it is unable to take into 

account the interrelationship of attributes [13]. Finally, 

VIKOR can determine the compromise solution out of a 

list of alternatives [16], which is also sometimes seen as 

a disadvantage [17]. Based on the previous 

considerations, TOPSIS was chosen for its easiness of 

application and its computational efficiency [18], along 

with being one of the most popular MCDM methods [15]. 

On the other hand, VIKOR was chosen thanks to its 

ability to identify a compromise solution. Moreover, both 

are able to identify a ranking of the alternatives.  

Regarding the adopted methods to aggregate expert 

opinions in fuzzy TOPSIS, there are two main 

approaches, both of which are unable to consider experts’ 

agreement [19]: i) average value and ii) minimum and 

maximum functions. This consideration could be 

extended also to other MCDM methods. To face the 

former challenge, quite recent papers integrated SAM 

with fuzzy TOPSIS to consider the consensus among 

experts [19], [20]. However, as stated by Ziemba et al. 

[19], it could be interesting to incorporate SAM with 

other MCDM approaches (e.g., VIKOR). Moreover, 

SAM cannot deal with the weight of experts when 

considering the agreement. Based on the previous 

considerations, an improved SAM developed by Guo et 

al. [21] is integrated with TOPSIS and VIKOR.  

Thus, in this work, an integration of two popular MCDM 

methods and the improved SAM is proposed. First, the 

improved SAM is adopted to aggregate expert opinions. 

Next, fuzzy TOPSIS and fuzzy VIKOR are applied in 

sequence to provide a ranking of solutions.  

III. MATERIAL AND METHODS 

An overview of the main approaches adopted to conduct 

this study is provided in the following subsections.  

A. Fuzzy Set Theory and Similarity Aggregation 

Method 

A trapezoidal fuzzy number can be expressed as a 

quadruplet of numbers through the following notation 

𝐴̃ = (𝑎1, 𝑎2, 𝑎3, 𝑎4). Let 𝐴̃ = (𝑎1, 𝑎2, 𝑎3, 𝑎4) and 𝐵̃ =
(𝑏1, 𝑏2, 𝑏3, 𝑏4) be two trapezoidal fuzzy numbers arising 

from the judgments of two experts, the improved SAM 

developed by Guo et al. [21] requires estimating the 

Similarity Degree (SD) through Eq. 1. 

𝑆𝐷(𝐴̃, 𝐵̃) =  1 −
1

4
∑ |𝑎𝑖 − 𝑏𝑖|4

𝑖=1                                             (1)  

The SD should be computed for each couple of experts 

involved in the analysis and for each provided opinion. 

Next, given an expert 𝐸𝑖, its Weighted Absolute 

Agreement (WAA) is computed according to Eq. 2. 

𝑊𝐴𝐴(𝐸𝑖) =
∑ 𝑊𝐸(𝐸𝑗)𝑆𝐷(𝐴𝑖,𝐴𝑗)𝑛

𝑗=1,𝑗≠𝑖

∑ 𝑊𝐸(𝐸𝑗)𝑛
𝑗=1,𝑗≠𝑖

                                    (2) 

where 𝑛 is the number of experts and 𝑊𝐸(𝐸𝑗) is the 

weight associated with the j-th expert. The former weight 

is usually based on different factors such as educational 

level, age, position, and service time. Subsequently, for 

each expert, the Relative Agreement (RA) and the 

Consensus Coefficient (CC) are obtained as shown in Eq. 

3 and Eq. 4, respectively. 

𝑅𝐴(𝐸𝑖) =
𝑊𝐴𝐴(𝐸𝑖)

∑ 𝑊𝐴𝐴(𝐸𝑗)𝑛
𝑗=1

                                                   (3)                                                                                                           

𝐶𝐶(𝐸𝑖) = 𝛽𝑊(𝐸𝑖) + (1 − 𝛽)𝑅𝐴(𝐸𝑖)                          (4) 

where 𝛽 is a user-defined parameter called relaxation 

factor, bounded between 0 and 1 included. Finally, the 

aggregated fuzzy number (𝐴̌𝑎𝑔) is calculated through Eq. 

5. 

𝐴̃𝑎𝑔 = ∑ 𝐶𝐶(𝐸𝑖) × 𝐴̃𝑖
𝑛
𝑖=1⨁ = (𝑎𝑎𝑔1, 𝑎𝑎𝑔2, 𝑎𝑎𝑔3, 𝑎𝑎𝑔4)(5) 
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The method presented in this paragraph can be extended 

to Triangular Fuzzy Numbers (TFNs) given that a 

triangular fuzzy number can be reconducted to a 

trapezoidal characterised by 𝑎2 = 𝑎3. 

B. Fuzzy TOPSIS 

Given a set of 𝑐 criteria 𝐶 = {𝑐𝑗|𝑗 = 1 … 𝑐} and a set of 

𝑀 alternatives 𝐴 = {𝐴𝑖|𝑖 = 1 … 𝑀}, the fuzzy TOPSIS 

requires a set of experts to associate with each criterion a 

weight, while assigning to each alternative a score for 

each criterion. Let 𝑊̃𝑗 be the weight associated with the 

j-th criterion, while 𝑋̃𝑖𝑗 = (𝑙𝑖𝑗 , 𝑚𝑖𝑗 , 𝑟𝑖𝑗) is the TFN 

identifying the rate of the i-th alternative with respect to 

the j-th criterion. Both 𝑊̃𝑗 and 𝑋̃𝑖𝑗  are TFNs obtained 

after the aggregation of expert opinions. Accordingly, a 

vector of criterion weights (𝑊̃) and a decision matrix (𝐷) 

could be built based on Eq. 6 and Eq. 7 [22].  

𝑊̃ = {𝑊̃𝑗|𝑗 = 1 … 𝑐}                                                     (6) 

𝐷 = [
𝑥̃11 ⋯ 𝑥̃1𝑐

⋮ ⋱ ⋮
𝑥̃𝑀1 ⋯ 𝑥̃𝑀𝑐

]                                                     (7) 

Next, a normalized decision matrix is developed through 

Eq. 8., where 𝑛̃𝑖𝑗 represent the normalized score of the i-

th alternative with respect to the j-th criterion. 

{

𝑛̃𝑖𝑗 = (
𝑙𝑖𝑗

𝑟𝑗
∗ ,

𝑚𝑖𝑗

𝑟𝑗
∗ ,

𝑟𝑖𝑗

𝑟𝑗
∗ )  ∀𝑗 𝜖 𝑏𝑒𝑛𝑒𝑓𝑖𝑡 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎

𝑛̃𝑖𝑗 = (
𝑙𝑗

−

𝑟𝑖𝑗
,

𝑙𝑗
−

𝑚𝑖𝑗
,

𝑙𝑗
−

𝑙𝑖𝑗
)  ∀𝑗 𝜖 𝑐𝑜𝑠𝑡 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎       

              (8) 

where 𝑟𝑗
∗ = max

𝑖
𝑟𝑖𝑗  ∀𝑗 𝜖 𝑏𝑒𝑛𝑒𝑓𝑖𝑡 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎, while 𝑙𝑗

− =

min
𝑖

𝑙𝑖𝑗 ∀𝑗 𝜖 𝑐𝑜𝑠𝑡 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎. Subsequently, based on the 

vectors of criteria weight, the weighted normalized 

decision matrix is computed, following Eq. 9.  

𝑣̃𝑖𝑗 =  𝑛̃𝑖𝑗⨂𝑊̃𝑗   𝑖 = 1 … 𝑀; 𝑗 = 1 … 𝑐                        (9) 

where 𝑣̃𝑖𝑗 is the weighted normalized score of the i-th 

alternative with respect to the j-th criterion. Based on the 

results arising from the previous step, the Fuzzy Positive 

Ideal Solution (FPIS) and the Fuzzy Negative Ideal 

Solution (FNIS) are estimated as shown in Eq. 10 and Eq. 

11, respectively. 

𝐹𝑃𝐼𝑆 =  {𝑣̃𝑗
∗|𝑗 = 1 … 𝑐}                                                (10) 

𝐹𝑃𝐼𝑁 =  {𝑣̃𝑗
−|𝑗 = 1 … 𝑐}                                                (11) 

where 𝑣̃𝑗
∗ = max

𝑖
𝑣̃𝑖𝑗, while 𝑣̃𝑗

− = min
𝑖

𝑣̃𝑖𝑗 [23]. For each 

alternative, the distances from the FPIS and FPIN are 

computed according to Eq. 12 and Eq. 13, respectively. 

𝑑𝑖
∗ = ∑ 𝑑(𝑣̃𝑖𝑗 , 𝑣̃𝑗

∗)𝑐
𝑗=1                                                     (12) 

𝑑𝑖
− = ∑ 𝑑(𝑣̃𝑖𝑗 , 𝑣̃𝑗

−)𝑐
𝑗=1                                                     (13) 

In Eq. 12-13 the distance between two TFNs is obtained 

as depicted in Eq. 14. 

𝑑(𝐴̃, 𝐵̃) =

√
1

3
∗ [(𝑙𝐴 − 𝑙𝐵)2 + (𝑚𝐴 − 𝑚𝐵)2 + (𝑟𝐴 − 𝑟𝐵)2]            (14) 

Finally, the Closeness Coefficient (𝐶𝑐𝑜𝑒𝑓𝑓) is estimated 

as shown in Eq. 15. 𝐶𝑐𝑜𝑒𝑓𝑓  represents the goodness of a 

given alternative. Specifically, good alternatives should 

be close to 𝐹𝑃𝐼𝑆 and far from 𝐹𝑃𝐼𝑁. The higher 𝐶𝑐𝑜𝑒𝑓𝑓, 

the better the alternative is for TOPSIS. Thus, it is 

possible to rank the alternatives based on 𝐶𝑐𝑜𝑒𝑓𝑓 . 

𝐶𝑐𝑜𝑒𝑓𝑓 =
𝑑𝑖

−

𝑑𝑖
−+𝑑𝑖

+                                                            (15) 

C. Fuzzy VIKOR 

As for fuzzy TOPSIS, the fuzzy VIKOR starts from a set 

of criteria (𝐶) and a set of alternatives (𝐴). Fuzzy VIKOR 

also requires a group of experts, who express their 

opinions on the importance of each criterion and the rate 

of each alternative with respect to each criterion. First, 

the ideal solution denoted as  𝑋̃𝑗
∗ = (𝑙𝑗

∗𝑚𝑗
∗𝑟𝑗

∗) and nadir 

solution identified as  𝑋̃𝑗
− = (𝑙𝑗

−𝑚𝑗
−𝑟𝑗

−) are estimated for 

each criterion based on Eq. 16 and 17, respectively [24]. 

{
𝑋̃𝑗

∗ = max
𝑖

𝑋̃𝑖𝑗    ∀𝑗 𝑏𝑒𝑛𝑒𝑓𝑖𝑡 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎

𝑋̃𝑗
∗ = min

𝑖
𝑋̃𝑖𝑗     ∀𝑗 𝑐𝑜𝑠𝑡 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎      

                         (16) 

{
𝑋̃𝑗

− = min
𝑖

𝑋̃𝑖𝑗    ∀𝑗 𝑏𝑒𝑛𝑒𝑓𝑖𝑡 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎

𝑋̃𝑗
− = max

𝑖
𝑋̃𝑖𝑗     ∀𝑗 𝑐𝑜𝑠𝑡 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎      

                         (17) 

Then, the normalised fuzzy difference is calculated for 

each couple of criterion and alternative, as shown in Eq. 

18. 

{

𝐷̃𝑖𝑗 =
𝑋̃𝑗

∗⊝𝑋̃𝑖𝑗

𝑟𝑗
∗−𝑙𝑗

−   ∀𝑗 𝑏𝑒𝑛𝑒𝑓𝑖𝑡 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎

𝐷̃𝑖𝑗 =
𝑋̃𝑖𝑗⊝𝑋̃𝑗

∗

𝑟𝑗
−−𝑙𝑗

∗   ∀𝑗 𝑐𝑜𝑠𝑡 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎       
                           (18) 

After the identification of the fuzzy normalised 

differences, the values of 𝑆̃𝑖 = (𝑆𝑖
𝑙, 𝑆𝑖

𝑚, 𝑆𝑖
𝑟), 𝑅̃𝑖 =

(𝑅𝑖
𝑙 , 𝑅𝑖

𝑚 , 𝑅𝑖
𝑟), and 𝑄̃𝑖 = (𝑄𝑖

𝑙 , 𝑄𝑖
𝑚 , 𝑄𝑖

𝑟) are computed 

according to Eq. 19, Eq. 20, and Eq. 21. 

𝑆̃𝑖 = ∑ 𝑊̃𝑗⨂𝐷̃𝑖𝑗
𝑐
𝑗=1⨁                                                      (19) 

𝑅̃𝑖 = max
𝑗

(𝑊̃𝑗⨂𝐷̃𝑖𝑗)                                                     (20) 

𝑄̃𝑖 = 𝜐
𝑆̃𝑖⊝𝑆̃∗

𝑆−𝑟−𝑆∗𝑙 + (1 − 𝜐)
𝑅̃𝑖⊝𝑅̃∗

𝑅−𝑟−𝑅∗𝑙                                (21) 

where 𝑆̃∗ = min
𝑖

𝑆̃𝑖, 𝑆−𝑟 = max𝑆𝑖
𝑟

𝑖
, 𝑅̃∗ = min

𝑖
𝑅̃𝑖, 𝑅−𝑟 =

max𝑅𝑖
𝑟

𝑖
, while 𝜐 is a user-defined parameter, which is the 

weight of the maximum group utility. Finally, the 

defuzzification of 𝑆̃𝑖, 𝑅̃𝑖, and 𝑄̃𝑖 could be performed 

based on Eq. 22 [25]. Through the defuzzied values, it is 

possible to define three ranks. Specifically, the 

alternatives can be ranked based on the crisp values of S, 
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R, and Q.  

𝐶𝑟𝑖𝑠𝑝(𝐴̃) =
𝑙+2∗𝑚+𝑟

4
                                                            (22) 

The compromise solution would be the one ranked as 

first for Q. However, the conditions of acceptable 

advantage and acceptable stability in decision-making 

are met. The first condition can be verified through Eq. 

23, while the latter is verified in case the best alternative 

for Q is also the best alternative for at least one between 

R and S.  

𝑄(𝐴(2)) − 𝑄(𝐴(1)) ≥ 𝐷𝑄                                                      (23) 

where 𝑄(𝐴(1)), 𝑄(𝐴(2)) are the alternatives ranked in 

first and second position for Q, respectively, while DQ = 

1/(M-1) or 0.25 if 𝑀 ≤ 4 [18]. In case Eq. 23 is not 

verified, a set of compromised solutions is obtained 

through 𝑄(𝐴(N)) − 𝑄(𝐴(1)) < 𝐷𝑄 for maximum N. 

IV. DEVELOPED METHODOLOGY 

The tools described in Section III are combined as shown 

in Figure 1 

 

Figure 1 flowchart of the developed framework 

First, the criteria based on which the alternatives should 

be evaluated are defined (step 1). Next, the alternatives 

to study are identified (step 2). Experts are asked to 

express two kinds of judgments: the importance of each 

given criterion (step 3.1), and the score of each 

alternative with respect to each criterion (step 3.2). The 

linguistic and fuzzy scales adopted to conduct step 3.1 

and step 3.2 are listed in Table I and Table II, respectively 

(elaborated from Junior et al. [26]). Then, the opinions 

arising from different experts are aggregated through the 

improved SAM (see Section III-A). Specifically, the 

improved SAM is used for both the criteria weight (step 

4.1) and the score of the alternatives (step 4.2). It is worth 

mentioning that the weight of each expert is evaluated 

following Guo et al. [21]. Based on the aggregated 

weight of each criterion and the aggregated rate of each 

alternative with respect to each criterion, the fuzzy 

TOPSIS is conducted. The fuzzy TOPSIS provides a 

ranking of the considered alternatives, allowing to 

identify the best solutions (step 6). Even though the 

former steps could be sufficient to identify the most 

suitable alternative, at least two MCDM approaches 

should be adopted to evaluate the consistency of the 

results [27]. Accordingly, a subset of the best alternatives 

depicted by the fuzzy TOPSIS (e.g., the first 5) is 

extracted (step 7). The subset is processed through a 

fuzzy VIKOR (step 8). Indeed, fuzzy VIKOR not only 

establishes a new ranking, but it can also provide a 

compromise alternative (step 9).  

TABLE I 
LINGUISTIC AND FUZZY SCALES TO EVALUATE THE WEIGHT OF EACH 

CRITERION 

Linguistic term Fuzzy TFN 

Of little importance (OL) (0,0,0.25) 

Moderately Importance (MI) (0,0.25,0.5) 

Important (I) (0.25,0.5,0.75) 

Very Important (VI) (0.5,0.75,1) 

Absolutely Important (AI) (0.75,1,1) 

 

TABLE II 
LINGUISTIC AND FUZZY SCALES TO EVALUATE THE RATE OF EACH 

ALTERNATIVE 

Linguistic term Fuzzy TFN 

Very Low (VL) (0,0,0.25) 

Low (L) (0,0.25,0.5) 

Good (G) (0.25,0.5,0.75) 

High (H) (0.5,0.75,1) 

Very high (VH) (0.75,1,1) 

V. RESULTS: APPLICATION OF THE METHODOLOGY 

A. Expert elicitation and improved SAM 

To describe the implementation of the framework, a 

cement plant is considered as case study. Indeed, the 

cement industry could be considered as highly energy 

intensive. Thus, reducing the energy requirements of a 

cement plant is very important. 

Specifically, three criteria are chosen to evaluate 

different alternatives. Specifically, the selected criteria 

related to energy-saving are the following ones (step 1): 

electricity saving (𝑐1), thermal saving (𝑐2), and fuel 

saving (𝑐3). On the other hand, four alternatives are 

considered in this study (step 2): replacing compressors 

with newer ones (𝐴1), installing a heat recovery system 

(𝐴2), replacing engines with newer ones or installing 

inverters (𝐴3), and install more efficient machines in the 

production line (𝐴4).  

A group of three experts is asked to express judgments 

related to the importance of each criterion (step 3.1) and 

the performance of each alternative with respect to each 

criterion (step 3.2). The results are shown in Table III and 
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Table IV, respectively.  

TABLE III 

WEIGHT ASSOCIATED WITH EACH CRITERION 

Criterion E1 E2 E3 

C1 AI VI AI 

C2 I I MI 

C3 MI OL I 

 

TABLE IV 
RATE OF EACH ALTERNATIVE WITH RESPECT TO EACH CRITERION 

Expert Alternative Criterion 

  C1 C2 C3 

E1 𝐴1 G VL VL 

𝐴2 VH G H 

𝐴3 L VL VL 

𝐴4 G VH L 

E2 𝐴1 L VL L 

𝐴2 VH L G 

𝐴3 G VL L 

𝐴4 G VH VL 

E3 𝐴1 L VL L 

𝐴2 VH L H 

𝐴3 L VL L 

𝐴4 G H VL 

 

Based on the improved SAM presented in Section III-A, 

both the weights of criteria (step 4.1) and the rates of the 

alternatives are aggregated (step 4.2), considering the 

fuzzy scales listed in Table I and Table II, respectively. 

The former steps are conducted considering a relaxation 

factor equal to 0.5 since it is one of the most popular 

values [28]. The aggregation leads to the results shown 

in Table V (for the weights) and Table VI (for the rates). 

TABLE V 

AGGREGATED TFN FOR THE WEIGHT OF EACH CRITERION 

Criterion Aggregated weight 

C1 (0.662, 0.912, 1) 

C2 (0.169, 0.419, 0.669) 

C3 (0.082, 0.243, 0.493) 

TABLE VI 

AGGREGATED TFN FOR THE RATE OF EACH ALTERNATIVE WITH 

RESPECT TO EACH CRITERION 

Alternative Criterion 

C1 C2 C3 

𝐴1 (0.069, 

0.319, 0.569) 

(0, 0, 0.25) (0, 0.179, 0. 

429) 

𝐴2 (0.75, 1, 1) (0.069, 

0.319, 0.569) 

(0.413, 

0.663, 0.913) 

𝐴3 (0.087, 

0.337, 0.587) 

(0, 0, 0.25) (0, 0.179, 0. 

429) 

𝐴4 (0.25, 0.5, 

0.75) 

(0.668, 

0.918, 1) 

(0, 0.071, 

0.321) 

B. Application of fuzzy TOPSIS 

The aggregated TFNs listed in Table V and Table VI are 

used as input to carry out the fuzzy TOPSIS (step 5). 

Indeed, Table V reports the vector of weights (𝑊̃), while 

Table VI could be seen as the initial decision matrix (D). 

Thus, the decision matrix is first normalised through Eq. 

8, and, subsequently, the weighted normalised decision 

matrix is obtained according to Eq. 9. After estimating 

FPIS and FPIN based on Eq. 10 and 11, respectively, 𝑑𝑖
∗ 

and 𝑑𝑖
− are computed for each alternative. The distances 

from the FPIS and the FPIN of each alternative are listed 

in Table VII. Finally, Eq. 15 allows estimating the 

Closeness Coefficient, which is exploited to rank the 

alternatives. The Closeness Coefficient associated with 

each alternative and the related rank are shown in Table 

VII as well. 

TABLE VII 

DISTANCE FROM FPIS AND FPIS, CLOSENESS COEFFICIENT, AND 

RANK OF EACH ALTERNATIVE 

Alternative 𝑑𝑖
∗ 𝑑𝑖

− 𝐶𝑐𝑜𝑒𝑓𝑓  Rank 

𝐴1 1.048 0.038 0.035 4 

𝐴2 0.228 0.860 0.790 1 

𝐴3 1.033 0.053 0.049 3 

𝐴4 0.563 0.528 0.484 2 

 

Following Table VII, it is possible to state that TOPSIS 

ranked as first 𝐴2, which means that installing a heat 

recovery system is the preferable solution among the four 

(step 6) to reduce the energy consumption in cement 

industries. Furthermore, 𝐴4 (i.e., installing more efficient 

machines in the production line) is the second most 

preferable solution. Finally, replacing compressors with 

newer ones (𝐴1) and replacing engines with newer ones 

(𝐴3) are depicted as the least suitable alternatives based 

on the considered criteria and their relative importance. 

C. Application of fuzzy VIKOR 

The framework presented in Fig. 1 specifies to select a 

subset of alternatives (step 7). Specifically, the user 

should specify the number of alternatives to consider for 

the following fuzzy VIKOR as an ordered subset of the 

best alternatives depicted by the TOPSIS. For instance, 

the user could consider the alternatives ranked from the 

first to the fifth. Defining a sub-group of alternatives is 

not mandatory, but it could be useful to focus on a lower 

number of alternatives that were previously ranked by 

another MCDM approach. For the present case study, due 

to the low number of considered alternatives, all four 

alternatives are processed through the fuzzy VIKOR 

(step 8).  

The fuzzy VIKOR exploits as input the same aggregated 

TFNs used for the fuzzy TOPSIS. Specifically, the fuzzy 

VIKOR considers both Table V and Table VI. Following 

the steps described in Section III-C, the ideal and nadir 
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solutions are estimated for each criterion based on Eq. 16 

and Eq. 17. After the estimation of the normalised fuzzy 

difference (see Eq. 18), the utility (𝑆̃𝑖) and regret (𝑅̃𝑖) 

values are computed for each alternative. The obtained 

fuzzy utility and regret values along with the 

corresponding crisp numbers (see Eq, 2) are listed in 

Table VIII and Table IX, respectively. Table VIII and 

Table IX report also the rank based on 𝑆̃𝑖 and 𝑅̃𝑖. 

TABLE VIII 

FUZZY AND CRISP VALUES OF 𝑆̃𝑖, WITH THE ASSOCIATED RANK 

  𝑆𝑖
𝑙 𝑆𝑖

𝑚 𝑆𝑖
𝑟 S crisp Rank 

𝑆̃1 0.198 1.180 2.162 1.180 4 

𝑆̃2 -0.206 0.251 1.161 0.364 1 

𝑆̃3 0.185 1.163 2.142 1.163 3 

𝑆̃4 -0.048 0.647 1.520 0.692 2 

 

TABLE IX 

FUZZY AND CRISP VALUES OF 𝑅̃𝑖, WITH THE ASSOCIATED RANK 

  𝑅𝑖
𝑙  𝑅𝑖

𝑚 𝑅𝑖
𝑟  R crisp Rank 

𝑅̃1 0.129 0.667 1.000 0.616 4 

𝑅̃2 0.017 0.251 0.623 0.285 1 

𝑅̃3 0.116 0.649 0.981 0.599 3 

𝑅̃4 0.008 0.490 0.806 0.448 2 

 

Using Eq. 21, the value of 𝑄̃𝑖 and the associated rank is 

estimated for each alternative as shown in Table X. To 

conduct this step, the weight of the maximum utility (𝜐) 

is taken equal to 0.5, as the typical adopted value [29]. 

TABLE X 

FUZZY AND CRISP VALUES OF 𝑄̃𝑖, WITH THE ASSOCIATED RANK 

  𝑄𝑖
𝑙  𝑄𝑖

𝑚 𝑄𝑖
𝑟  Q crisp Rank 

𝑄̃1 -0.453 0.406 1.000 0.340 4 

𝑄̃2 -0.594 0.000 0.599 0.001 1 

𝑄̃3 -0.462 0.393 0.986 0.328 3 

𝑄̃4 -0.565 0.204 0.767 0.152 2 

 

As depicted in Table XI, 𝐴2 (i.e., installing a heat 

recovery system) is the compromise alternative (step 9). 

Furthermore, 𝐴2 emerges also as the best alternative for 

both 𝑆̃𝑖 and 𝑅̃𝑖. Accordingly, the condition of acceptable 

stability is verified. Finally, considering the condition of 

acceptable advantage, 𝐴2 and 𝐴4 emerged as compromise 

solutions. 

VI. DISCUSSION 

The proposed framework is able to provide a ranking of 

the different alternatives, which could be exploited as a 

guideline for the decision-making process related to 

energy-saving investments. For the considered case 

study, the integration of the improved SAM and the fuzzy 

TOPSIS led to the following ranking 𝐴2 > 𝐴4 > 𝐴3 >
𝐴1. Accordingly, the best energy-saving solution would 

be 𝐴2, which is the installation of a heat recovery system. 

This is aligned with previous studies which identified the 

heat recovery systems as common implemented solutions 

in energy-intensive plants [4]. Indeed, high temperatures 

are reached in a cement plant, thus the exhaust gases 

could still maintain a high degree of heat, which could be 

seen as a loss of the process. A heat recovery system 

could allow to retrieve the heat, increasing the efficiency 

of the production. On the other hand, the replacement of 

engines and compressors with newer ones (respectively 

𝐴3 and 𝐴1) are depicted as the worst alternatives. As a 

matter of fact, the installation of newer and more efficient 

engines or compressors could allow reducing the electric 

energy or fuel requirements, but the saving is often 

limited. However, it is worth mentioning that only 

energy-saving criteria were considered for the analysis 

(i.e., electric energy saving, thermal energy saving, and 

fuel saving). Even though the replacement of engines and 

compressors is not so profitable in terms of energy 

savings, it is associated with the lowest cost among the 

considered investments. However, the cost was not 

considered as a criterion influencing the analysis. 

Another interesting finding is that both fuzzy TOPSIS 

and fuzzy VIKOR determined the same best alternative 

(i.e., 𝐴2) for the considered case study. In case the 

decision maker finds a similar scenario could pick the 

common best alternative. However, it is worth 

mentioning that different judgments (e.g., arising from 

different experts or different contexts) could lead to 

different results. Thus, it is up to the decision maker to 

pick which is the best alternative between the ones 

recommended by the TOPSIS and the VIKOR, 

respectively. 

VII. CONCLUSION 

Under the current requirements of energy efficiency, 

selecting the most suitable energy-saving solutions is 

fundamental. This paper presents a framework to 

facilitate the former decision-making process thanks to 

the integration of two popular MCDM methods (i.e., 

TOPSIS and VIKOR), FST, and the improved SAM. 

From a theoretical perspective, this work faces the 

problem of aggregating expert opinions, which is often 

neglected in the context of MCDM approaches. 

Specifically, the improved SAM is a robust and objective 

aggregation method since it allows considering the 

weight of the experts and their consensus. Furthermore, 

the adoption of two MCDM tools provides a higher 

flexibility to the decision maker, other than being 

preferred to assess the consistency of results when 

subjectivity is present. 

From a practical perspective, the tool proposed in this 

study could be exploited by any decision maker who 

wants to rank the performance of different energy-saving 

solutions with respect to different criteria. This task can 

be accomplished even without significant information 

since a set of experts could be consulted to provide 

missing information or data.  

Considering the limitations of this study, it is worth 

mentioning that a reduced set of criteria and alternatives 



XXVIII Summer School “Francesco Turco” – « Blue, Resilient & Sustainable Supply Chain » 

was considered. Accordingly, it could be possible to 

expand the set of criteria and alternatives to evaluate how 

more alternatives and criteria influence the final ranking. 

Furthermore, expert judgments, user-defined parameters, 

and fuzzy scales could affect the results. Thus, another 

future avenue could include a sensitivity analysis 

involving the former factors. Finally, the current 

approach is tested on a single case study and for a single 

application. Therefore, considering the developed 

approach for different case studies and applications could 

be useful to analyse its weaknesses and strengths further.  
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