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Abstract: Data collection, analysis, and exploitation are among the most discussed topics in current researches related 
to Industry 4.0, especially as far as production themes are concerned. Some authors have discussed the benefits that 
could originate from the exploitation of product functioning data for maintenance delivery in the Product-Service 
System (PSS) field. Despite this, a comprehensive approach considering both the asset and the service perspectives for 
the improvement of the service delivery process is still missing. The authors try to deal with the service delivery 
decision-making problem presenting a task allocation model aimed at minimizing the total tardiness in maintenance 
delivery. The model considers actual information from both the asset (e.g. the Residual Useful Life (RUL) of a 
component) and the service (e.g. the operator’s calendar, the various resolution approaches available and the mean 
time to repair with a specific approach, customer features) to match the tasks and the operators. The paper describes 
the model development, discussing the benefits of data exploitation in the decision-making process. Moreover, the 
role and benefits of such a model in a data-driven decision-making process for PSS delivery are discussed. Finally, the 
paper presents the model limitations and its possible extensions, considering additional constraints and different 
objective functions.  
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1. Introduction 

In the current servitization scenario, the efficient delivery 
of services represents an important instrument for 
manufacturing companies who want to create long and 
strong relationships with their customers (Kindström & 
Kowalkowski, 2014). One of the effects of the spread of 
the Industry 4.0 programs in the manufacturing sector is 
the possibility to generate, share and analyse unprecedented 
quantities of data related to the production process and the 
behaviours of the assets (Cattaneo et al., 2018; Moghaddass 
& Zuo, 2014). This data could be used to monitor the 
productivity but also to detect and predict failures in the 
production process, which could be related to the process 
structure or problems in the machines (Tamilselvan & 
Wang, 2013), and tackle them in a promptly (Hu et al., 
2012). In particular, one of the most discussed approaches 
to data analysis concerns the usage of Machine Learning in 
the scope of predicting or classifying machines status 
(Kotsiantis et al., 2006). Therefore, data exploitation could 
play a pivotal role in the servitization journey of 
manufacturing companies (Bagozi et al., 2017; Coreynen et 
al., 2015).  

Asset monitoring is not the only factor concurring in 
guaranteeing efficient productivity of the machines, but 
also the structure of the service offering, such as 
maintenance delivery, plays a fundamental role (Rahman et 
al., 2017). The effectiveness of maintenance delivery 
depends upon the definition of proper maintenance 
policies, which usually are established after the company 

knowledge on the behaviours of the assets and, thus, on the 
company experience (Potes Ruiz et al., 2013). Similarly, 
decisions at the operational level, such as the allocation of 
the maintenance intervention to the operator, are 
performed with limited support of specific tools 
(Gopalakrishnan et al., 2015). Data gathering and analysis 
results to be not fully exploited if decision-makers rely 
mainly on their experience instead of the data from the 
field. 

The authors have proposed a framework for data-driven 
maintenance delivery that, through the exploitation of data 
related to the service and the asset, intend to improve the 
maintenance delivery decision-making phase (Sala, Pirola, 
et al., 2019). The framework proposes a structured 
approach to data collection and analysis and also specific 
tools to support these activities. One of the tools under 
development in the framework is aimed at supporting the 
planner in the task allocation phase. This paper proposes 
an initial study on the task allocation phase through the 
definition of an offline optimization model that, 
considering asset and service-related data, aims at 
minimizing the total tardiness of the interventions. 

The paper is structured as follows: Section 2 deals with a 
literature review on the topics of service delivery and task 
allocation. Section 3 describes the general problem, its 
formulation and the following analysis on the model 
computational time. Section 4 discusses the possible 
extensions of the current model. Eventually, Section 5 
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concludes the paper delineating the future steps in the 
research. 

 

2. Literature Review 

2.1 Maintenance Delivery Process 

When it comes to creating economically sustainable PSS, 
the service delivery aspect, which is constituted by all those 
actions performed in back-office or front-office by the 
customer and the employees to allow the correct delivery 
of a specific service (Mathieu, 2001), cannot be neglected. 
According to the previous definition, service delivery 
encompasses a series of activities and relations between 
actors that should guarantee a satisfactory result for the 
customer and the supplier. This is not always true, many 
times companies are not able to guarantee a satisfactory 
delivery of their services because of problems distributed 
along the process (Sala, Pezzotta, et al., 2019). These 
problems could originate from different sources like the 
activities performed by the actors, the interactions between 
them, the decisions that the actors make, the information 
flow inside the process or others (Rondini et al., 2018). 
Each of these factors, combined with others like resource 
availability, which usually are rather limited, contributes to 
influencing the way service delivery happens. (Sala, Pirola, 
et al., 2019) describes a framework aimed at improving 
maintenance delivery proposing a structured data-driven 
decision making-process that, considering data collected 
from the asset and service can support the planner in 
organizing the delivery process by allocating the 
intervention requests to the operators. In particular, the 
framework proposes to establish a strategy for data 
collection and analysis for the asset and service so that it 
would be possible to create a continuous flow of 
information that if properly managed, can lead to the 
optimal allocation of the maintenance intervention 
requests.  

In the case of maintenance, the exploitation of the 
knowledge created by the company over the years 
constitutes the base on which constructing a reliable 
maintenance engineering, able to define suitable 
approaches for the prevention of unexpected failures (Ruiz 
et al., 2014). Depending on the asset and on the specific 
component, different maintenance policies and approaches 
could be adopted, resulting in a different way to manage 
and deal with each failure (Andreacchio et al., 2016). For 
example, with failures that to be fixed require expensive 
components and/or prolonged downtimes, it would be 
advisable to apply preventive and/or proactive 
maintenance policies. On the other side, for failures 
repairable in a short time, without the need for expensive 
components, it would be advisable to adopt corrective 
policies. It is important to evaluate the way assets and 
components are monitored and maintained. The frequent 
substitution of the components may result in an inefficient 
way to manage the asset maintenance resulting thus in the 
substitution of components before the end of their 
Residual Useful Life (RUL). This is not optimal from the 
economical point of view since it implies higher 
expenditures for maintaining the components compared 

with the necessary ones (Andreacchio et al., 2016). Thus, 
the usage of process data, as proposed in (Sala, Pirola, et al., 
2019), could be useful in supporting analysis to determine 
the health status of certain components and intervene 
promptly.  

In light of the spread of Industry 4.0, software, data 
collection and analysis become a major topic of discussion 
for practitioners and researchers working on maintenance 
delivery. The problem has been approached mainly from 
the asset monitoring aspect, with many papers dealing with 
the use of Machine Learning techniques to predict the 
components failure (Carvalho et al., 2019; Chopra & 
Priyadarshi, 2019; Ruiz-Sarmiento et al., 2020). The 
introduction of an approach able to monitor the status of 
the components and predict their failure in advance can 
have positive consequences on maintenance intervention 
scheduling, which strongly influences customer 
satisfaction. Effective results on customer satisfaction 
could be achieved only if the scheduling approach is 
coherent with the content of the service contracts 
established with customers (e.g. minimization of the tardy 
tasks if there is a penalty for the late completion of the 
maintenance interventions). The development of such a 
schedule requires to consider information from both the 
service and the asset since the joint use of information on 
the asset status and on the service operators’ competences 
and performance could help in the intervention allocation. 
Thus, the need for an approach considering these aspects 
emerges. 

2.2 Task allocation 

The definition of an effective schedule for operators able 
to satisfy all the customers and maximising the service 
supplier is a tricky task. Many variables, going from 
operators’ calendar, to travel costs, to travel time and 
others, has to be taken into account when making decisions 
related to this topic. Frequently maintenance planners are 
requested to work with limited resources, evaluating and 
prioritizing the customers’ requests. To do so, planners 
need to take into account several aspects and consider 
multiple variables, relying, in the majority of cases, on their 
experience and knowledge to make decisions related to the 
allocation of the interventions to the operators 
(Gopalakrishnan et al., 2015).  

Many authors have discussed the problem of the task 
allocation over the years (Agnihothri & Mishra, 2004; 
Anim-Ansah et al., 2006; Hurkens, 2009; Lagemann et al., 
2014; Xu et al., 2014), proposing different approaches 
aimed at maximising or minimising different objective 
functions depending on the problem under investigation. 
An example of this can be found in (Pal et al., 2017), which 
propose an optimization model for maintenance 
scheduling in process industries aimed at optimizing the 
production of the company while considering maintenance 
and power-balance constraints in the production units. 
Another example can be found in (Huang et al., 2018), 
which describes an optimization model that, in the light of 
Industry 4.0 data collection possibilities, is focused on the 
minimization of maintenance costs thanks to the 
exploitation of process data and health status data. 
(Agnihothri & Mishra, 2004) proposes an optimization 
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model discussing the effects of cross-training on efficient 
and cost-effective service delivery. Similarly, (Xu et al., 
2014), in their model, show the importance of cross-
training for operators when it comes to optimize the service 
delivery reducing the provision cost and maximise the 
customer satisfaction. Besides operators’ skills, other inputs 
should be considered during the operators scheduling. For 
example, (Anim-Ansah et al., 2006) discusses, in addition 
to the importance of the operators’ skills, the influence of 
travel time and operators’ availability on the schedule 
definition while trying to maximise the service quality.  

At the operative level, the presence of an effective decision-
making tool to support the planner may be decisive for the 
effective allocation of the interventions, especially when it 
comes to considering the time criticality aspect. This aspect 
affects not only customer satisfaction but also its 
productivity. In the case of corrective maintenance, the 
prompt allocation of an operator to the customer requests 
may be fundamental to reduce the machine downtime and 
allow the restart of the production. The integration of 
service data with information on the assets health status 
mixed with the usage of proper decision-making tools 
could improve the intervention allocation phase (Sala, 
Pirola, et al., 2019). 

Thus, this paper tries to continue the research on 
maintenance delivery proposing a preliminary version of an 
optimization model that, integrating the service and asset 
information is aimed at improving the allocation of the 
intervention requests to the operators. 

 

3. Problem Definition and Formulation 

This section is devoted to the proposal and discussion of 
an optimization model that, considering information 
collectable from the service and the asset, proposes the 
allocation of intervention requests to the operators. Under 
the hypothesis of the existence of service contracts between 
the supplier and the customers, the model aims to allocate 
the intervention to the operators in a way that minimizes 
the interventions that end later than established in the 
contract and, thus, minimize the total tardiness. 

3.1 Definition 

Let us consider a set 𝐾of intervention requests required to 
Company A to be executed in the following week. At the 
end of the current week, the planner collects all the requests 

𝐾 to fulfil the allocation task. Since the complete pool of 
requests to be allocated is known before the beginning of 
the activity, this can be defined as an offline allocation 
problem. 

Each intervention request in 𝐾 can be fulfilled in more than 
one way, depending on the request itself. Resolution 
methods can span from remote support to on-field 
intervention performed sending an operator to the calling 
customer’s facility. The resolution method depends upon 
the type of intervention request and the experience of the 
customer in handling the failures.  

To be fulfilled, each task requires different skills, time and 
costs. Therefore, the service provider has to select the task 

for each intervention that better satisfies the customer’s 
request minimizing the costs for the provider and 
maximising the customer satisfaction by respecting the 
constraints established in the contract. In the scenario 
analysed by the current model, the costs are mainly related 
to the possibility of unmet the SLA, as the other costs are 
covered by the service contract established between the 
stakeholders. 

3.2 Formulation 

We formulate the problem as a parallel machine scheduling 
problem, considering the operators as machines running in 
parallel to perform tasks. The allocation of interventions to 
operators is similar to the problem of allocating jobs to 
(unrelated) parallel machines. We address the parallel 
machine problem described above using the assignment 
and positional variables (Unlu & Mason, 2010). Thus, in the 
proposed formulation, the typical schedule structure at the 
beginning of the week is represented by a series of empty 

“positions” 𝑝 available in the schedule of each operator. 
We refer the reader to the paper by Unlu & Mason (2010) 
for the details. The model in Unlu & Mason (2010) is used 
as a starting point to formulate the management of the 
operators’ calendar while other variables have been 
considered to structure the analysis. As introduced in 
Section 2, the model is a part of a service- and asset- related 
framework supporting the improvement of maintenance 
delivery and, thus, uses as input historical and real-time 
information from both sides, finding in this its originality. 

To formulate the problem described in Subsection 3.1 we 
make use of the following notation: 

 𝐾: set of intervention requests; 

 𝑀𝑘: set of tasks (i.e. resolution interventions) that 

satisfy the request 𝑘 ∈ 𝐾; 

 𝑂: set of available operators; 

 𝑃: set of positions for the intervention requests 
allocation. 

Each intervention request 𝑘 ∈ 𝐾 defines a set of tasks 𝑀𝑘  
that fulfil the request. In our model, we make the following 
assumptions:  

 Each operator 𝑗 ∈ 𝑂 can execute every task (i.e. 
has all the required skills). Operators differ in the 
execution time of the tasks, which depends on the 
operators’ experience (e.g. one operator performs 
better with the on-site interventions while the 
other performs better with the remote support. 
Both can carry out the two tasks but their 
execution time is different); 

 At the time of requests allocation, the schedule of 
the operators are blank, no tasks are assigned; 

 To execute the tasks, all the operators depart and 
return to the headquarters before going to the 
next customer. 

Let us define the following parameters: 
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 𝐷𝐷𝑘 : due date of intervention request k, defined 

as min{𝑆𝐿𝐴𝑘; 𝑅𝑈𝐿𝑘}, where 𝑆𝐿𝐴𝑘 is the date 

before which the request 𝑘 must be fulfilled 
according to the service level agreement agreed 

with the customer, and 𝑅𝑈𝐿𝑘 is the residual life 
before the breakdown of the component 

associated to request 𝑘 ∈ 𝐾; 

 𝑡𝑘𝑚
𝑇𝑂𝑃 : travelling time for the operator to reach 

(and come back from) the location of the 

intervention request 𝑘 addressed with the 

task𝑚 ∈ 𝑀𝑘 . Since all the operators depart and 
return to the headquarters, this value is not 

dependent on the single operator 𝑗 ∈ 𝑂; 

 𝑡𝑘
𝑆𝑆: time to get the spare parts in place for the 

execution of task 𝑚 ∈ 𝑀𝑘 fulfilling the 

intervention request 𝑘 ∈ 𝐾. This time is 

dependent only upon the intervention request 𝑘, 
because it is the intervention required that 
determines the necessity of spares; 

 𝑡𝑘𝑚𝑗
𝐼𝑁𝑇 : time required to perform task 𝑚 ∈ 𝑀𝑘 by 

the operator𝑗 ∈ 𝑂; 

 𝑀: a constant, large number for modelling 
purpose. 

Finally, we make use of the following variables: 

 𝛾𝑝𝑗= end date of the task scheduled in the p-th position 

for operator 𝑗 ∈ 𝑂; 

 𝐶𝑘= completion time of intervention 𝑘 ∈ 𝐾; 

 𝑇𝑘 = {
𝐶𝑘 − 𝐷𝐷𝑘 𝑖𝑓𝐶𝑘 > 𝐷𝐷𝑘

0𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 = tardiness 

Each intervention request has to be allocated to a single 
operator, and all the tasks have to be allocated. The 
allocation of the intervention requests is done using a 

binary variable 𝑥𝑘𝑚𝑗𝑝 equal to 1 if intervention requests 𝑘 ∈

𝐾 is assigned to the position 𝑝 of the schedule of the 

operator𝑗 ∈ 𝑂 who is tasked with task 𝑚 ∈ 𝑀𝑘, and 0 
otherwise. 

Thus, the problem is formulated as follows: 

min 𝑍 = ∑𝑇𝑘
𝑘∈𝐾

 (1) 

∑ 𝑥𝑘𝑚𝑗𝑝 = 1∀𝑘 ∈ 𝐾
𝑘∈𝑀𝑘

𝑗∈𝑂
𝑝∈𝑃

 
(2) 

∑ 𝑥𝑘𝑚𝑗𝑝 ≤ 1∀𝑗 ∈ 𝑂, 𝑝 ∈ 𝑃
𝑘∈𝐾

𝑚∈𝑀𝑘

 
(3) 

𝛾𝑝𝑗 ≥ ∑ (𝑡𝑘𝑚𝑗
𝐼𝑁𝑇 + 𝑡𝑘𝑚

𝑇𝑂𝑃) ∙ 𝑥𝑘𝑚𝑗𝑝∀𝑗 ∈ 𝑂, 𝑝 = 1
𝑘∈𝐾

𝑚∈𝑀𝑘

 
(4) 

𝛾𝑝𝑗 ≥ 𝛾(𝑝−1)𝑗 + ∑ (𝑡𝑘𝑚𝑗
𝐼𝑁𝑇 + 𝑡𝑘𝑚

𝑇𝑂𝑃) ∙ 𝑥𝑘𝑚𝑗𝑝∀𝑗 ∈ 𝑂, 𝑝
𝑘∈𝐾

𝑚∈𝑀𝑘

∈ 𝑃\{1} 

(5) 

𝐶𝑘 ≥ 𝛾𝑝𝑗 −𝑀(1 − 𝑥𝑘𝑚𝑗𝑝)∀𝑘 ∈ 𝐾,𝑚 ∈ 𝑀𝑘 , 𝑗 ∈ 𝑂, 𝑝𝑖𝑛𝑃 (6) 

𝑇𝑘 ≥ 𝐶𝑘 − 𝐷𝐷𝑘∀𝑘 ∈ 𝐾 (7) 

𝐶𝑘 − ∑ 𝑡𝑘𝑚𝑗
𝐼𝑁𝑇 ∙ 𝑥𝑘𝑚𝑗𝑝

𝑚∈𝑀𝑘
𝑗∈𝑂
𝑝∈𝑃


≥ ∑
𝑡𝑘𝑚𝑗
𝑇𝑂𝑃

2
∙ 𝑥𝑘𝑚𝑗𝑝

𝑚∈𝑀𝑘
𝑗∈𝑂
𝑝∈𝑃


∀𝑘 ∈ 𝐾 
(8) 

𝐶𝑘 − ∑ 𝑡𝑘𝑚𝑗
𝐼𝑁𝑇 ∙ 𝑥𝑘𝑚𝑗𝑝

𝑚∈𝑀𝑘
𝑗∈𝑂
𝑝∈𝑃


≥ 𝑡𝑘
𝑆𝑆∀𝑘 ∈ 𝐾 

(9) 

𝑇𝑘 ≥ 0∀𝑘 ∈ 𝐾 (10) 

𝑥𝑘𝑚𝑗𝑝 ∈ {0,1}∀𝑘 ∈ 𝐾, ∀𝑚 ∈ 𝑀𝑘 , 𝑗 ∈ 𝑂, 𝑝 ∈ 𝑃 (11) 

𝛾𝑝𝑗 ≥ 0∀𝑝 ∈ 𝑃, 𝑗 ∈ 𝑂 (12) 

𝐶𝑘 ≥ 0∀𝑘 ∈ 𝐾 (13) 

The objective function (1) minimizes the total tardiness. In 
the hypothesis of the definition of a service contract based 
on the SLA with penalties due to late interventions, the 
service provider needs to minimize the number of tardy 
interventions delivered to customers. Such an objective is 
relevant in the considered case because it minimizes the 
number days late and, thus, reduces the penalties that the 
company has to face. Moreover, tardiness results to be an 
important factor in consideration of the machine 
productivity, which results to be furtherly reduced in case 
of tardy maintenance interventions. In this sense, it can be 
noted that tardiness is also related to costs, expenses, and 
profitability of a company. Constraint set (2) stipulates that 
each intervention request is allocated exactly once, whereas 
constraint set (3) guarantees that each position on every slot 
contains at most one task. Constraint set (4) and (5) defines 

the completion time of the task in position 𝑝 for the 
operator 𝑗. Constraint set (6) defines the completion time 

of intervention 𝑘, whereas constraint set (7) sets the 

tardiness variable 𝑇𝑘 . Constraint sets (8) and (9) stipulate 
that the start of the intervention must occur after the spares 
are delivered to the location and after the operator has 
arrived. Finally, constraint sets from (10) to (13) define the 
domains of the variables. 

3.3 Numerical analysis of computational time 

The performance of the model should be tested and 
assessed against the current process and methods 
commonly adopted in practice. However, at this point of 
the research, we are more interested in understanding the 
general characteristics of the problem concerning its 
practical implementation and adoption in a real service 
planning process. Due to space limitation, we focus now 
on the analysis of the average computational time that the 
model requires to achieve a solution. The solution time of 
a model may hinder of favour its practical adoption in a real 
context. If the running time is too high, it may be difficult 
to use such a model in a day-by-day process, where it may 
be necessary to change the considered data or change the 
planning because of disruptions and issues occurring in the 
network (i.e. delay in task execution, problems with the 
spare parts, last-minute operator related issues). 

With this scope, the authors formulated the problem and 
solved multiple instances considering a growing number of 
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intervention requests and the number of operators. 
Random instances have been used to solve the problem. In 
particular:  

 Number of intervention requests: from 50 to 300, 
with increments of 50; 

 Number of operators: from 10 to 100, with 
increments of 10; 

 Number of tasks: 3. 

For each pair (intervention requests and operators), the 
authors solved 5 instances, for a total of 120 overall.  

Figure 1 reports the average time required to solve the 
model using an Intel® Core™ i5-7200 CPU @ 2.50 GHz, 
2 core, using Cplex12. Analysing Figure 1 it is possible to 
notice how the resolution time starts growing consistently 
when the number of interventions is higher than 150 and 
the number of operators is higher than 40. Besides, the 
resolution time grows exponentially when the number of 
intervention requests is higher than 250 and the number of 
operators is higher than 70. Thus, the current allocation 
model may be suitable for problems that have a limited 
number of variable to handle.  

 

 

Figure 1: Computational Time 

 

4. Model extensions 

The task allocation problem addressed in this work 
represents a first step in the definition of a comprehensive 
optimization model able to consider all the services and 
asset-related information part of the framework described 
in (Sala, Pirola, et al., 2019). The current model is thus 
expected to be extended in the next future through the 
implementation of additional constraints or by changing 
the objective function considering new resolution interests. 

The first change that could be applied to the model is 
related to the criticality of the interventions, which could 
be introduced assigning weights that changes according to 
the request type. Thus, equation (1) becomes:  

min 𝑍 = ∑𝑤𝑘 ∗ 𝑇𝑘
𝑘∈𝐾

 (14) 

Considering the current objective function, equation (1), 
this could be changed if the interest is to minimize the total 
number of tardy interventions instead of the total tardiness 
in the schedule. Thus, the objective function changes as 
follows: 

min𝑍 = ∑𝑈𝑘
𝑘∈𝐾

 (15) 

In equation (15), 𝑈𝑘 is the sum of the tardy interventions. 

In particular, 𝑈𝑘 = 1 if the intervention 𝑘 ∈ 𝐾 is satisfied 

after the due date 𝐷𝐷𝑘 , and equal to 0 otherwise. The 
definition of such an objective function changes the nature 
of the problem. If in the first case the aim was to minimize 
the total tardiness considering all the interventions, in the 
second case the aim is to minimize the number of tardy 
interventions. The perspective of the problem changes. In 

fact, in the first case a 𝑇𝑘 may be the result of one 
intervention with the tardiness of 10 or 10 interventions 
with the tardiness of 1 each. Instead, in the second case, 

𝑈𝑘 = 10 means that the company has 10 interventions that 
are tardy. Thus, the decision related to the objective 
functions is strongly influenced by the company strategy 
and the service contracts established with the customers. In 
some cases, it would be better to have only one intervention 
in considerable tardiness, in other cases it would be better 
to have several interventions with small tardiness. 

Considering the updated objective function (15), also the 
constraint set (7) has to be updated 

𝐶𝑘 ≤ 𝐷𝐷𝑘 −𝑀 ∙ 𝑈𝑘 (16) 

Constraint set (15) is true in two cases. In one case, the 

completion time 𝐶𝑘 is actually lower than the due date 𝐷𝐷𝑘 . 

In the other case, 𝐶𝑘 is higher than 𝐷𝐷𝑘 , and the constrain 

is valid only if 𝑈𝑘 = 1, which means that the intervention 
is tardy. The definition of such a constraint allows counting 
the number of tardy interventions, supporting the use of 
the objective function written in the equation (15).   

Another aspect that could be taken into account when 
extending the model is the possibility that the operators are 
not skilled for every intervention. The current model 
assumes that all the operators are skilled to execute every 
task associated with the different intervention requests. The 
difference between the operators can be found in the time 
requested to execute the interventions. In a real context, 
not all operators can execute all the interventions. To 
implement this into the model, it is necessary to introduce 
a constraint set that considers the skills required by the task 
and the skills that the operator has. It would be necessary 
thus, to know for every intervention, and related task, the 
skills required to fulfil it optimally. To implement such a 
constraint in the model, it would be necessary for the 
service provider to map and store all the competencies of 
the resources working in the service department. Once 
mapped, the competence database could be used to filter 
the list of operators able to execute the required 
intervention reducing the risk of allocating the requests to 
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operators who are not sufficiently skilled to execute it 
efficiently.  

Another possibility for the extension of the model is related 
to the introduction of availability windows or calendars for 
operators. As of now, the model considers an empty 
schedule for the operators at the beginning of the planned 
week. For this reason, the model can assign each 
intervention without the necessity to consider blocked and 
unavailable periods. The introduction of such a hypothesis 
would mean to reduce the availability of the operators, 
increasing the difficulty for the optimization model to 
identify a configuration that minimizes the total tardiness 
(if the objective function is equation (1)) or that minimizes 
the number of tardy interventions (15). At the same time, it 
would also be possible to assign more than one 
intervention to the same time window, allowing an operator 
to perform two or more consecutive interventions as long 
as the time window is not closed. 

In future extensions, the model should better clarify the 
impact of costs in the definition of the solution. As of now, 
the model works under the assumption that costs are only 
related to tardy interventions, and are modelled only 
indirectly through the minimization of the tardiness. Future 
development should consider the quantification of these 
costs in the model considering also the weight of the tardy 
intervention, including both the temporal and economic 
aspects in the resolution. 

Finally, the model as of now adopts a deterministic view of 
the problem (i.e. concerning the time required for the 
operator’s travel or the execution of the intervention), while 
stochasticity is neglected. An extension should consider 
this aspect to provide sound results. Similarly, a sensitivity 
analysis could be used in the current model to test the 
stability of the solution. 

 

5. Conclusions 

The allocation of intervention requests to operators is a 
critical task for companies who intend to offer a 
satisfactory maintenance service to their customer. The 
new possibilities disclosed by Industry 4.0 in terms of data 
extraction and elaboration allow improving the way 
components health status is monitored. Data-driven 
decision-making could contribute to the way maintenance 
interventions are scheduled since, using suitable 
approaches, it could be possible to anticipate the failure, 
intervening only in the proximity of it, avoiding a too early 
repair activity that would prevent the company from 
exploiting at maximum the RUL of the components as 
much as possible. Moreover, it would be possible to 
support the daily tasks of the planners and the service 
department through the elaboration of aggregated data and 
the exploitation of specific useful information. 

This paper contributes to this research stream through the 
proposal of an optimization model that, considering 
information incoming from different sources, supports the 
planner in allocating the intervention requests to the 
operators to minimize the total tardiness of the 
interventions. The information sources can be divided into 

two main categories: service-related and product-related. 
Service information is mainly related to the available service 
resources and to the time constraints (e.g. set of tasks, set 
of operators, with the related schedule, SLA, time required 
to perform an intervention and to travel to the customer 
for the operator and the spare parts). Product information 
is mainly related to the RUL associated with a specific 
component or to an asset (depending on the granularity of 
the analysis).  

The introduction in service departments of such a model 
could contribute to the improvement of the service 
performance by reducing the time required to allocate the 
task to operators and, at the framework level, as discussed 
in Section 2, introducing a continuous improvement logic 
that supports the identification of the problems that slow 
down maintenance delivery at the service and asset levels. 
In turn, this analysis would impact also on the intervention 
allocation in the medium term, since more specific 
information on the operators’ performance and time 
required to execute the interventions will be available and, 
this, will be elaborated. 

The application of the model discussed in this paper can 
have effects also on the definition of the service contracts. 
The knowledge created can be used to propose tailored 
contracts based on customer necessities and supplier 
capabilities. For example, only specific service levels could 
be proposed to customers, depending on supplier 
capabilities. Besides, more expensive contracts could be 
signed if some customers are willing to have a higher 
service level guaranteed. 

The model proposed in the paper is an initial version of a 
more comprehensive model able to consider more aspects 
and variables, as discussed in Section 4. Future works will 
encompass the update of the model considering what has 
been discussed in Section 4 and its implementation in a real 
context. 
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