XXV Summer School “Francesco Turco” — Industrial Systems Engineering

State detection and RUL prediction of industrial plant
components in the absence of fault data. Comparison between
multivariate control charts and one-class SVM: a case study.

Navicelli A.*, De Catlo F.* Tucci M.*

* Department of Industrial Engineering, University of Florence, 1ia di S. Marta, 3 50139 - Florence - Italy
(andrea.navicell{@unifi.it, filippo.decarlo@unifi.it)

Abstract: Predictive maintenance for critical components’ monitoring in industrial plants has aroused the interest of
many researchers in recent years. The typical phenomenology of industrial plants’ failures shows degradation of
petformance before the occutrence of the failure event; therefore, predictive maintenance is the most suitable
technique to intercept them. To implement prognostics is necessaty to have a lot of data on system behavior in both
nominal and degraded conditions up to the failure event. With this information, it is possible to build a suitable
prognostic model using a mathematical-statistical ot machine learning technique. The advent of the fourth industrial
revolution favored the collection of real-time assets’ data. The low failure rate that characterizes most critical assets of
industrial plants, result in a lot of nominal conditions’ and an absence of degraded conditions’ data, hampering the
implementation of prognostic. In this article, have been developed, validated, and compared on a case study two
prognostic techniques using only nominal condition data. The first one is based on the multivariate control charts
(Hotelling); the second one uses the one-class Support Vector Machine model. Both techniques, combined with an
Autoregressive Integrated Moving Average time series analysis model, allow the real-time prediction of the anomalous
opetating condition of the monitored asset. Since we don't have any fault data acquired on field, both the prognostic
models developed can predict significant deviations from nominal operating conditions due to the degradation
phenomena, but they can’t characterize the failure mode that will arise until the failure occurs for the first time. The
two models were applied to a case study to verify their robustness in predicting deviations from the nominal operating
conditions of a multistage compressor caused by surge phenomenon.

Keywords: Predictive maintenance, state detection, RUL prediction, multivariate control charts, Support

Vector Machine

1.Introduction

In such a competitive industrial context, it is necessary to
control both production (De Catlo et al, 2014) and
maintenance performance. with regard to maintenance
petrformance, predictive maintenance is a maintenance
philosophy that is part of preventive maintenance
techniques together with periodic and condition-based
maintenance (Ahmad and Kamaruddin, 2012). It is based
on real-time monitoring of the operating conditions of
industrial plant components and process systems to
estimate their Remaining Useful Life (RUL). Once this
parameter is known, maintenance engineering can easily
optimize and schedule the maintenance interventions
necessary to restore the performance of the machines, with
the consequent reduction of corrective interventions,
responsible for most of the total maintenance costs
(Lofsten, 1999). The overall maintenance costs are defined
as the cost for the ordinary interventions, planned and
organized in advance, and for the extraordinary
interventions, caused by unforeseen breakdowns, which
have a greater economic impact on the company due to the

longer period of out of service of the machinery
(Komonen, 2002). Another obvious direct benefit of a
predictive maintenance system is the increased availability
of machinery. (Si et al,, 2011) The implementation of a
predictive maintenance system is also the most appropriate
technique for 89% of failure modes, compared to periodic
maintenance, which is appropriate in the remaining 11%.
(Hashemian, 2010) So the interest of researchers in
predictive maintenance has increased exponentially since
1952 when the first article was published, as shown in
Figure 1.

Many studies have sought to develop maintenance support
systems (De Catlo et al., 2013) and the last frontier is the
development of a predictive maintenance system that
requires data of the analyzed asset during its evolution
towards failure and an advanced internet of things (IoT)
infrastructure (Kanawaday and Sane, 2017). The high
reliability of most of the critical plant components,
combined with the strong use of periodic maintenance,
result in a low number of failure data that makes it
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apparently impossible to estimate the RUL of the industrial
ctitical components.
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Figure 1: Number of published articles per year (Keywords:
Predictive Maintenance, Limits: Articles, Source:
Scopus.com).

In this case, the literature proposes, state detection
techniques based on Statistical Process Control (SPC),
which simply warns in case of anomalous behavior of the
asset (Alwan and Roberts, 1988; Betsimis et al., 2007,
MacGregor and Kourti, 1995; Mason and Young, 2002;
Oakland, 2007). In this context, this study aims to build a
RUL prediction methodology that can be used in the
absence of failure data. The idea is to combine a state
detection model with a time series analysis to estimate the
RUL. For this purpose, two different state detection
methods based on the SPC principles have been built: the
first one is based on multivariate control charts (Hotelling
chatts) and the second one instead is based on the Machine
Learning model called One-class Support Vector Machine
(SVM). Both techniques combined the selected control
variables, that are related to the failure mode under analysis,
and gives as output a single variable proxy of the
component  performance. Applying the ARIMA
(AutoRegressive Integrated Mouving Average) time series
analysis technique to the output of the state detection
models, it is possible to predict a possible excessive drop in
component performance and assimilate it to a failure event.
ARIMA model is widely used and considered one of the
most comprehensive mathematical techniques of time
series analysis also for industrial application. (Chen et al.,
2009; Pai and Lin, 2005; Zhang, 2003) The two constructed
RUL prediction models were then compared by applying
them to a case study.

In the next chapter, the methodology developed, and the
main mathematical techniques used for its development
will be presented. The chapter "Case study” presents its
application to the surge failure mode of the multistage
centrifugal compressor of a geothermal power plant, and
finally, the methodology and future developments will be
discussed in the last 2 sections.

2 Methodology

In this chapter, it is presented first all the mathematical
techniques used for the development and comparison of
the prognostic models. In the last section has instead
presented the logic used to build and compare them.

2.1 Multivariate control charts

The multivariate control charts, introduced in 1947 by
Harold Hotelling, make it possible to aggregate information
about certain process variables on a diagram using the so-
called T? statistics. The T? control chatts ate based on the
normal multivariate distribution and the Mahalanobis
distance, ie. the distance of the set of variables acquired
from the average of the Gaussian multivariate distribution
fitted on the training data set. The values of the mean
vector and covariance matrix of the population are
estimated from the historical data set of the selected control
vatiables. The T? Hotelling statistic is defined as follows:

are:

Xp, ees Xy (1

column vectors of real numbers where each column
represents the history of a selected control vatiable and:

X= ++x)/n @)
Their averages. Is:
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The matrix of their variances and x are the column vector
of the estimated population averages, you have:

T?=@E-wWW(E-p O
(Bersimis et al., 2007; Ilin and Raiko, 2010).

The T? statistic is the single proxy control variable of the
performance of the analyzed component used to detect
significant performance variations and to be analyzed using
the time series analysis model to predict when performance
will fall below the acceptability threshold.

Since T? is the distance of the set of variables from the
average of the Gaussian multivariate built on the historical
data of full operation condition, an increase of the T?
parameter corresponds to a decrease in the performance of
the component.

2.2 One-class SVM

The unsupervised one-class learning or SVM aims to
separate data from the origin in n-dimensional space, with
n equal to the number of control varables. It is an
algorithm used to detect abnormal values. The algorithm is
trained on the historical data set of the selected control
variables related to the full capacity period of the analyzed
component to minimize the double expression:

0,5 Xk 0, G(25, %) ©)
Compared to &y, ..., X, liable to:
Ya;=nv (6)

With 0 <o;<1 for each j=1,..,n. The value of
G(x;, Xy 1s an element (j, K) of the Gram matrix.

A small value of v leads to fewer support vectors and,
therefore, to a smooth and raw decision-making boundary.
A great value of v leads to a greater number of support
vectors and, therefore, to a sinuous and flexible decision-
making contour. The optimal value of v should be large
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enough to capture the complexity of the data and small
enough to avoid overtraining. Also,

0<v=1.
(Scholkopf et al., 2001)

Once trained on the historical data of the control variables,
the model assigns to each set of new data the likelihood
value of belonging to the training population. The
likelihood value is therefore the single proxy control
variable of the petformance of the controlled component
to be used to detect significant changes in performance and
to be analysed using the time series analysis model to
predict when performance will fall below the acceptability
threshold.

The higher is the likelithood value of the new set of data the
closer they are to the data used for training the SVM model.
As the training is done on the data related to the full
capacity conditions of the machinery, the higher the
likelihood value and the better the performance of the
component will be.

2.3 ARIMA

The ARIMA (AutoRegressive Integrated Moving Average)
method is a model that, using 3 parameters (p,4,q), can
model the trend of a time series and predict what will
happen in the following temporal instants. The 3
parameters indicate:

e  p:order of the self-regressive model;
e d: degree of the first differential;
e  q:moving average model order.

With p,d,q € N.

The determination of the best parameters to be used for
the construction of the ARIMA model is fundamental to
obtain a good forecast.

The model used in the case study performs an automatic
optimization of the three parameters by minimizing the
Aikaike Information Criterion (AIC). This parameter has a
value equal to:

aic = —2(logL) + 2(numParam) @)
With:
numParam =p+d +q ©)

This criterion prefers ARIMA models with high
loglikelihood compared to the data used to build the model
and penalizes those with a high number of parameters (Box
et al., 2015; Pai and Lin, 2005; Zhang, 2003). By setting the
desired number of forecasts points, the model returns for
each forecast point its expected value and its standard
deviation assuming a Gaussian noise around the variable's
trend. In the next chapter, the two developed RUL
prediction models will be applied to a single case study and
the prediction performance of the RUL will be compared.

2.4 RUL prediction models

As described in the previous chapter, the RUL prediction
models have been built only on the full capacity data of the
component under analysis. The application to a case study

of which we have also the failure data, allows the
comparison of the two developed models in the RUL
forecast. The scheme followed for the development and
comparison of RUL prediction models is schematically
represented in Figure 2.

The logic developed to estimate the RUL of industrial plant
components involves the use of two different classes of
statistical mathematical models:

e  Statistical process control model (models 1 and 2
in Figure 2);
e Time series analysis model (model 3 in Figure 2).

The first one is a model designed to identify anomalous
behaviour of the component under control, while the
second one analyses the evolution of its petformance over
time and forecasts its future trend. By setting a minimum
threshold of acceptability of the component performance,
the model can provide an estimation of the RUL of the
component under analysis.
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3. RULestimation accuracy

Figure 2: Scheme of development and comparison of RUL
prediction models

The performance of industrial plants can be derived from
a set of process variables that describe their operation. To
build a RUL prediction model, it is necessary to acquire in
real-time the value of these variables and process them
through the SPC model to obtain a single control variable
related to the performance of the analysed component. The
control variables that can be acquired in real-time to
estimate the performance of industrial plant components
are typically: vibrations, temperatures, pressures and flow
rates. For this purpose, two different multivariate statistical
process control models were used, applied to a single case
study and compared:

e Multivariate control charts or Hotelling charts;
e  One-class SVM;
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The first one is a classical statistical SPC model while the
second one is a machine learning model. The component's
control variable, proxy of the performance, is then analysed
by a time series analysis model that predicts its trend over
time. The model selected and developed (activity 3 in
Figure 2) is an autoregressive integrated moving average
model (ARIMA). Once the two RUL prediction models
have been built on historical data, the application to the
case study allows us to compare their performance. The
comparison parameters used atre 3:

e  Tirst species state detection model error;
e Second species state detection model error;
e Accuracy in estimating the RUL

3 Case study

The methodology developed was applied to a geothermal
enetrgy production plant. The plant follows a single flash
condensing cycle and can develop power, when fully
operational, of about 20 MW. The machinery studied is the
compressor for the extraction of incondensable gases. It is
3-stage centrifugal turbomachinery that brings back the
incondensable gases, processed together with the steam by
the turbine and the condenser, under atmospheric pressure
conditions and at a temperature of about 170 °C;
conditions that allow it to be effectively treated before their
release in the atmosphete.

Steam and gas
from the wells

3° compressor
P =
stage

To the gas
treatment plant

|

L——— Gas Cooler

| 1" compressor |
stage

stage

2 compressot.

Capacitor

To the cooling
towers

Figure 3: Case study compressor diagram

The analysis of the historical data of the compressor
together with the specialized personnel of the case study
company, allowed us to select the data related to the full
capacity of the machinery for the training of the state
detection models and to use the data related to the surge
phenomenon to verify that these give a performance value
of the compressor significantly lower than those used for
the training of the model. The application of the time series
analysis model also allows us to evaluate the accuracy of the
RUL estimation of the two models. Given the nature of the
machinery, all the sensors related to the thermofluid-
dynamic conditions (pressure, temperature, and flow rate)
of the processed gas at the inlet and outlet of all
compression stages have been selected for a total of 16
control variables related to the compressor performance.

The historical period analyzed, corresponding to about 8
days of data acquisition with 1-second sampling, was

divided together with the plant personnel into 3 different
periods: full capacity, anomaly and surge.
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Figure 4: Example of operating conditions periods division

The data for the period of full capacity count 635782
elements for each of the 16 control variables, 166473 for
the period of anomaly operation, and 42103 for the surge
period. A latge amount of data duting the regime petiod
used to train the two state detection models ensutes their
robustness.

3.1 Application of multivariate control cards

On the data has been built the multivariate control charts
using the "pea" function of the Matlab softwate. One of the
function outputs is the T? statistic, control vatiable related
to compressor performance. The trained model was then
applied to the anomaly and sutge petiod data. Given the
high noise of T? statistics, it was decided to make a moving
average with a time bucket of 300 seconds to make the
ARIMA forecast more stable and the SPC more robust
(Kay, 1993). Figure 5 shows the trend of the moving
average of the T? statistics over time with the associated
upper control limit (UCL) of 25,06 with 95% confidence
and the lower control limit for the surge period (SCL) of
77,36 with 5% confidence:
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Figure 5: Evolution over time of the moving average of the
control variable T?

It is clear from Figure 5 that the T? values for the period
marked as surge (in red) are well above the upper control
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limit, in particular. the minimum T? value in the surge
period is 65.61 and the average value is 190.66. The first
species error of the model, ie. the model mistake in
reporting surge period, is null. Having chosen an upper
control limit of 95%, the error of the second species, i.e.
the incorrect reporting of full capacity as surge, is 5%. To
obtain also a second species null etror, it is necessaty to use
as a signaling logic of the anomalous operation condition
of the comptessor, the T? statistic above the UCL threshold
for a time greater than 2587 seconds. Using this logic, the
model can signal an operating anomaly 45,34 hours before
the onset of the failure mode under examination.

3.2 Application of the One-class SVM

As in the ptevious case, the model has been trained on
historical data related to the full capacity period,
represented in Figure 4 in blue, to train the SVM model,
Matlab's “fitcsvm” function with Gaussian ketnel and
automatic scale parameter optimization was used. Given
the high noise of the output control variable of the trained
model, it was decided to make a moving average with a time
bucket of 300 seconds as in the previous case (Kay, 1993).
Figure 6 shows the trend of the moving average of the
Likelthood control variable over time with the associated
lower control limit (LCL) of 5883 with 95% confidence and
upper control limit for the surge petiod (SCL) of -1.148

with 5% confidence:
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Figure 6: Evolution of the moving average of the
Likelihood control variable over time

Also in this case it is evident that the surge data (in red in
the figure) are extremely below the LCL control limit; in
particular, the maximum value of the control variable in the
surge period is -1.06 and has an average value of -1.19. The
model, therefore, has a high state detection capability of
surge conditions. The first species error on the analysis
period is null and have chosen a 95% lower limit, the
second species error is 5%. To obtain an error of second
species null, it is necessary to use, as a signaling logic of the
anomalous operation condition of the compressor, the
permanence below the LCL threshold for a time of more
than 146732 seconds (40 hours approximately), thus
canceling the state detection power of the model
Alternatively, the same result can be achieved by lowering
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the LCL threshold limit to 3751 (LCL_beta_0). In practice,
as shown in Figure 6, LCL_beta_0 is the lower control limit
such that the likelihood does not go beyond that limit
during the full capacity period (blue in Figure 6). Using this
threshold value, the model can signal the compressor surge
45,96 houts before the failure mode occurs.

3.3 Application of the ARIMA model

Once we have verified that both models have a high state
detection power for the analyzed case study, we have built
a method to evaluate the quality of the compressor RUL
estimation by imagining its use in real-time. Figure 7 shows
the functioning scheme of the ARIMA algorithm
developed and the evaluation of the RUL prediction power
of the model:
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Figure 7: Schema of the ARIMA model in the case study
and evaluation of its performances

The ARIMA model was tested on the output data of the
two constructed state detection models, i.e. the historical T?
values for the multivariate control charts and the
Likelihood output values of the One-class SVM model, to
compare their predictive performance. In the case of the
model that uses Hotelling charts, T? data starts to be
marked as anomalous after they are above the UCL_95%
threshold for longer than 2857s. In the case of the one-class
state detection model, all data below the LCL_beta_0
threshold are considered abnormal. In both cases, the
ARIMA model has been initialized on the first 1000
anomalous values. The model initialization calculates the
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parameters that best fit the data through automatic
optimization based on AIC minimization. The model
output is the expected value and 95% confidence band of
the future moment in which the value of the control
variable proxy of the compressor performance exceeds the
SCL_5% limit threshold. The initialized ARIMA model is
first adapted on the time series of which we want the
forecast (Time-series Data in Figure 7) using the “estimate”
function and then we make the forecast using the
“forecast” function on MATLAB software. The strong
instability of the T? control parametet in the anomaly
period makes the ARIMA forecast extremely unstable for
all anomalous data until the surge event occurs, making the
forecast unreliable. As far as the Loglikelihood output
parameter of the One-class SVM model is concetned, this
initially shows a very stable downwatd trend. The forecast
with the ARIMA model is also stable and robust from the
very first forecasts as shown in Figure 8.
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Figure 8: First RUL ARIMA prediction

The ARIMA model estimates an expected RUL of the
component of 31,4 minutes and considering a 95%
confidence interval on the forecast, a lower limit of 25,5
minutes and an upper limit of 38,8 minutes. Comparing this
value with the real RUL calculated between the timestamp
of the first RUL prediction with the ARIMA model andthe
start of the surge period i.e. the first red data in figure 4, we
found that the RUL is undetestimated of about 45,68
hours. Subsequently, as shown in Figure 6, the
Loglikelihood value becomes very unstable and returns
over the LCL_95% control limit, making it impossible to
continue forecasting with the ARIMA model.

4 Discussion

The extremely unstable behavior of the compressor
petformance proxy parameter in both state detection
models may be due to the choice of the failure
phenomenon under analysis. The surge phenomenon is not
a real failure event, but rather a phenomenon that, if
prolonged over time, leads to compressor failure, due to the
high vibrations it causes. The surge is not caused by a
mechanical degradation of the compressor, but by the
thermofluid-dynamic conditions of the processed gas and
the conditions of the circuit in which it is inserted.

Ultimately, depending not only on the performance of the
compressot but also on the whole circuit, this phenomenon
is very difficult to predict (Gravdahl and Egeland, 2012,
1999). When applying this RUL prediction methodology in
the field, the absence of fault condition data means that the
SCL_5% control limit cannot be calculated a priori but
assumed at some distance from the full capacity population
used to train the state detection models. From the single
case study analyzed, it appears that for the surge
phenomenon, the regime and failure population are
extremely distant, especially using the One-Class SVM
model. In addition, the same low performance conditions
of the monitored machinery may be caused by several
failure events. The choice of the correct training control
variables for state detection models can partially mitigate
this uncertainty. When you have available data related to
the spy variables of the failure phenomenon even in bad
conditions, you can implement a more robust RUL
prediction and also a prognostic model system using a two-
class SVM model. This will then be able to recognise the
class of full capacity from that of the specific failure mode
under analysis without uncertainty. (Navicelli et al., 2019)

5 Conclusions and future developments

Both process control models (multivatiate control catds
and One-class SVM) applied to the case study show high
performance in terms of state detection power of abnormal
conditions of the studied compressor. We cannot say the
same about the ARIMA model applied to the proxy control
variable of the compressor performance output of the two
state detection models. In one case, the extremely unstable
trend of the compressor performance in the transient
between full capacity and surge does not allow to make any
RUL forecast using the ARIMA model. In the second case,
the forecast is extremely stable in the initial period, but the
RUL estimation is strongly underestimated.

The table below provides a summary of the performance
of the two RUL prediction models studied.

Table 1: Performance of state detection and RUL
prediction models

Hotelling One-Class
+ ARIMA SVM +ARIMA
First species error 0% 0%
Second species error 0% 0%
Eatly State 45,34 ore 45,96 ore
Detection
RUL estimate n.d 31,4 minuti
Real RUL - RUL n.d 45,68 ore
estimate

The future steps of this research are the application of the
same RUL prediction methodology to different case studies
and failure modes to obtain a generalized result.
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