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Abstract: Modern manufacturing companies operate at fast pace and their processes presents several in-plant 

interdependencies. In addition, human operators still play a pivotal role in particular for scenarios in which automation is not 

feasible or economically viable.  Therefore, consistent decision-making processes are needed to reinforce in-plant 

performances at targeted levels. In this scenario, traditional tools of analysis are no more adequate to monitor such complex 

and variable environments. Recently, different digital technologies have been developed to acquire insightful and structured 

datasets of manufacturing processes. Among them, indoor positioning systems have gained interest due to their ability to 

accurately track any tagged moving asset within a certain coverage area. This paper proposes an original hardware and 

software architecture to autonomously and quantitatively monitor labor intensive job shops. The hardware consists in an 

Ultrawide-band based indoor positioning system, where tags are assigned to workers. The software counterpart leverages the 

acquired spatial and temporal data to enhance the visibility of production processes into different levels. On one hand, an 

automatically evaluated from to chart defines the rate of dependency among the geofenced areas of the job shop. Times spent 

within the storage areas are computed to evaluate the impact of replenishment routes for each worker. On the other hand, a 

Gantt chart displays times spent in each area along with the visiting sequence. By selecting a time interval equal to the cycle 

time of the job shop is possible to visualize how working times are divided into the different areas. From these valuable 

outputs, a re-layout of the entire job shop may be suggested and identified to increase the productivity of the process. The 

consistency and the resilience of this digital architecture is tested in a real manufacturing job shop which performs manual 

and automatic machining for the automotive industry.    
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I. INTRODUCTION 

In modern and globalised markets, manufacturing 

companies operates at fast pace and their processes 

present an increasing amount of internal and external 

interdependencies [1]. Therefore, long before the 

COVID19 pandemic, manufacturing companies were 

leveraging Industry 4.0 technologies to be more resilient 

to changing market conditions and increase their 

productivity [2]. 

In this scenario, automated machines and collaboratives 

robots have progressively replaced humans in 

performing repetitive and dangerous tasks. 

Consequently, human operators play a pivotal role in 

fulfilling experienced and extremely value-added tasks 

[3]. A relevant target of such labour-intensive industries 

is to smooth the mutual collaboration between 

automated resources and workers. Although automated 

processes are measurable and predictable through 

quantitative methods, the management of human 

centred production processes is usually a challenging 

task [4]. Hence, traditional tools of analysis along with a 

decision-making process solely based on personal 

experience are inadequate to reinforce required in-plant 

operational efficiencies [5].  

The demanding need of structured  datasets resulted in 

ubiquitous adoptions of another core digital solution 

brought by the fourth industrial revolution, e.g., 

Industrial Internet of Things (IIoT) technologies. As 

Internet connected devices, these heterogeneous sensors 

allow to collect and analyse vast amount of data in 

complex and variable manufacturing processes [6]. In 

particular, an accurate indoor positioning information of 

industrial assets have gained a tremendous importance 

in the latest years in manufacturing environments. 

While the Global Positioning System is mostly 

underperforming in non-line-of sights (NLoS) settings, 

indoor positioning systems (IPS) meet the requirement 

to accurately track industrial assets within an indoor 

coverage area defined by the displacement of anchors 

(ANs)  at known positions of the production layout. For 

this purpose, different IPS-based framework were 

proposed in the manufacturing industry. Among all the 

possible applications, quantitative and automatic 

monitoring of in-plant performances gained  relevant 

interest in different scenarios [7].  For instance, Tran et. 

al [8] described a valid path to increase the consistency 

and the reliability of the traditional lean management 

tools (e.g., spaghetti chart, value added working times, 

process traceability, etc.). 
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Considering the current trend of industries to shift the 

decision-making process towards data analysis, this 

paper proposes an original hardware (HW) and software 

(SW) architecture aimed at providing quantitative hints 

on labour intensive manufacturing job shops. While the 

adoption of IPS to monitor in-plant manufacturing 

operations is a research area deeply investigated, few 

contributions targets the monitoring of human operators 

working task. For this purpose,  the HW part consist in 

an UWB-based IPS where workers wear in the preferred 

upper arm an anonymous tag. The SW counterpart 

leverage positioning data to provide two major 

quantitative outputs. First, a from to chart defines the 

rate of interdependencies among areas of the job shop. 

This key performance indicator is further narrowed to 

analyse the working patterns in the material storage 

areas.  Second, a Gantt chart exploits the operator 

visiting sequence of job shop areas for any time 

window. Therefore, the main focus of this research is to 

perform an activity segmentation process of the working 

routine of human operators upon which, if necessary, 

trigger a re-layout of the entire job shop. By doing so,  

plant workers would be in the best conditions to 

perform their manual tasks in fast and dynamic 

production environments. The section 2 describes the 

operative functioning of the IPS along with their 

industrial applications to monitor in-plant 

manufacturing performances. Subsequently, it is 

outlined the developed digital architecture to enhance 

the visibility of manual production process (Section 3). 

Here, two dedicated subsections present the HW and 

SW architectures, respectively. Section 4 describes the 

real case study where the developed digital architecture 

is tested and thus validated. The obtained results 

bundled with an extensive discussion are outlined in the 

Section 5. Finally, Section 6 ends this work with the 

conclusions and further research opportunity.    

II. LITERATURE REVIEW 

This section introduces different configurations of the 

IPSs along with geometrical methods to determine the 

tag position. Subsequently, different IPS-based 

manufacturing applications are investigated.    

A. Indoor positioning systems state of the art 

Over the few last years, different working industries 

developed the need to exploit indoor positioning 

information of their strategic assets. In such NLoS 

scenarios, the global positioning systems is mostly 

underperforming due to the obstructed direct connection 

between transmitters and receivers. Therefore, IPS were 

largely adopted in indoor settings to enhance the 

visibility of industrial processes [9].  

Based on specific requirements, different means of 

short-range communications were proposed such as 

Ultrasonic ranging, Radio Frequency positioning, 

infrared radiations etc.  Among them,  Radio 

Frequencies technologies represent the most suitable 

solution for indoor environments mainly due to lower 

interference potential and large penetration power [10]. 

In addition, there are different protocols of 

communications distinguished by set-up requirements 

along with strengths and weaknesses. Although the 

Ultrawide-band (UWB) technology requires a dedicated 

hardware infrastructure,  it is currently one of the most 

adopted solutions for its precise positioning accuracy 

(up to 30 cm). This is provided by a bandwidth at least 

equal to 500 MHz which prevent interferences with 

other systems and yield higher multipath resolutions 

[11].  

In the UWB positioning systems, the geometric methods 

most commonly adopted to determine the unknown 

position of tags are the Received Signal Strength 

Indicator (RSSI), the Angle-of-Arrival (AoA),  the 

Time-of-Arrival (ToA) and the Time-Difference-of-

Arrival (TDoA) [12].While AoA accuracies decrease 

with increases in distances between tags and ANs and 

ToA has poor positioning accuracies in NLoS 

environments, the TDoA best meets the requirements to 

simultaneously track multiple tags. The TDoA exploits 

the distance between tags and ANs based on the signal 

propagation time. For a successful positioning 

estimation, this method requires at least three online 

ANs upon which determine the position on the tag 

based on the intersection of hyperbolas [13].   

Despite the multitude of sectors (e.g., healthcare) were 

IPS are adopted, the following subsection outlines the 

adoption of such technologies to monitor industrial 

processes and thus reinforcing at target  levels in-plant 

performances.   

 

B. Industrial applications of indoor positioning 

systems for process monitoring 

Over the last few years, the crescent need to enhance the 

visibility of manufacturing processes have resulted in 

vast adoption of different communication protocols of 

IPS in manufacturing environments. The area of 

applications in production and logistic can be broadly 

grouped into quality and safety management, and 

efficiency monitoring [7]. For the manufacturing 

processes in which the role of  workers is still pivotal, 

the aforementioned applications have a strong interest. 

Although the process of tagging human operators 

gained little attention compared to other industrial 

assets, the scientific research offers different 

contributions to monitor in-plant performances through 

specific IPS hardware architectures [11]. 

In such scenario, Gladysz et. al [14] benefitting from an 

UWB-based IPS tagged several forklifts to develop a 

dynamic spaghetti chart within the monitored system. 

Adopting a dynamic approach for monitoring forklifts  

provide several benefits to the decision-making process. 

For instance, while abnormal movements of forklifts are 

evaluated identifying the root causes, the utilization rate 

of resources and docks are quantitatively assessed. This 

dynamic and quantitative approach provides a structured 

path to the management to implement corrective actions 

to the scheduled scenario. Furthermore, in production 
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settings, heterogeneous set of products (e.g., raw 

materials and WIP) can be tagged. In addition, to the 

unique ID each tag may store other information such as 

the type of product and the belonging batch.   This 

approach provides a substantial competitive advantage 

at the production level. Dynamic and quantitative key 

performing indicators reflect under different viewpoints 

the efficiency of the ongoing process. This allows to 

detect bottlenecks and unexpected deviations from the 

planned state of the production process. Based on these 

quantitative outputs, the management achieves a better 

visibility on the monitored process and  if necessary, 

modify the scheduling in terms of batches to be 

manufactured. Therefore, the optimal scenario is 

validated upon the quantitative data acquired by the 

adopted IPS [15][16].  A similar approach to reduce 

downtimes in production environments is proposed by 

Kelepouris et. al [17]. Considering that manufacturing 

environments typically deals with limited number of 

resources, several shared tools were tagged to reduce 

human operator searching times. The adoption of an IPS 

resulted in a daily saving time equal to 80 minutes to 

search six different tools. Although the mentioned 

quantitative approaches provide a valid path to enhance 

the visibility of manufacturing processes, in the 

literature there are few contributions aimed at achieving 

the same purpose by tagging human operators. 

Therefore, this paper proposes an UWB-based IPS HW 

architecture where the productive tasks of workers are 

anonymously monitored during the shift within an 

operating job shop. Subsequently, the SW counterpart 

leverages the acquired time-dependent geometrical data 

to generate quantitative metrics to improve the 

knowledge and efficiency of the monitored industrial 

process.  

 

III. DIGITAL ARCHITECTURE 

This section describes the developed HW and SW 

architecture to quantitatively and automatically analyse 

manual production processes.  

A. Hardware architecture 

The engineered HW architecture constitutes of 

distinctive components based on commercial Decawave 

modules.  The six ANs has to be displaced in the ceiling 

of the monitored area at a height approximately between 

3 and  7 metres. These reference points are based on a 

Raspberry Pi 3 along with a vertically polarized 

Decawave DWM1001 UWB-based radio technology. 

The outlined network is synchronized and connected 

exploiting the Wi-Fi.  In addition, benefitting the MQTT 

protocol, acquired data are stored in a spatial database. 

Based on this network configuration, the entire 

infrastructure can be remotely accessed and managed.  

The tags worn by workers on the preferred upper arm in 

a runner armband (Fig. 1) represent the other main key 

component of the architecture. The anonymous sensor, 

developed by Nordic Semiconductors and powered by a 

LiPo, is based on a nRF521 low-power MCU with 

Bluetooth connectivity.   Then, the MCU is connected 

through the Serial Peripheral Interface (SPI) 

communication protocol to a DMW1000 module. This 

module, compliant to IEEE802.15.4-2001 standard, is a 

fully integrated single chip UWB low-power and low-

cost transceiver IC. At the end of the shift positioning 

data are downloaded in csv format and thus leveraged 

by the advanced algorithms that are extensively outlined 

in the following subsection. 

 

 

Fig. 1. Tag worn by a worker 

 

B. Software architecture 

The SW architecture, developed in MATLAB R2021a 

executable files (.exe),  leverages data acquired by the 

UWB-based IPS as depicted by the heuristic flow 

diagram in Fig. 2. For simplicity, the flow diagram is 

divided into three main steps. The first one evaluates 

any entrance and exit in strategic areas of the monitored 

layout for each active tagID. Once acquired, the 

positioning data for each t-th tag during the f-th frame 

(Pt
f) are filtered through a median filter and a 2D 

constant velocity Kalman Filter. Trivially, to each Pt
f 

raw array is related a specific timestamp Tt
f. This 

reliable and structured dataset has an average sampling 

time over the shift equal to 0.15 seconds. Subsequently, 

the monitored job shop has to be divided into N areas. 

Each n-th area (an) is either a regular or irregular 

polygon with known 2D vertices. At this point, the 

algorithm checks,  for each t-th tag and f-th frame, 

whether Pt
f  belongs to the n-th area with respect to the i-

th visiting sequence(at
n,i). The i-th visiting sequence 

groups at least one Pt
f which belongs to the related n-th 

area. In addition, the index i is incremented if and only 

if exists at least one positioning location related to a 

specific area. Once, a 2D geometrical positions is 

assigned to a specific at
n,i , Pt

f is assigned to the first 

empty row of the matrix pat
n,i. This matrix stores all Pt

f  

which belongs to the i-th visiting sequence in a defined 

n-th area. The same procedure is applied to determine 

the array of the timestamps related to the i-th visiting 

sequence for the t-th tag in a specific n-th area (tat
n,i). 

Trivially, pat
n,i and tat

n,i  have the same length if the 

indexes upon which are subjected assume the same 

value.  



XXVII Summer School “Francesco Turco” – «Unconventional Plants» 

 

Fig. 2. Heuristic diagram of the software architecture 

After assigned all Pt
f to the respective at

n,i, the second 

step of the flow diagram groups the visiting sequences 

into two categories. In this regard, the Euclidean 

distance is computed among consecutive rows of pat
n,i  

for each i-th visiting sequence and t-th tag (distt
n,i). Of 

course, distt
n,i is a real array with one row less than the 

respective pat
n,i. In each array of distt

n,i, it is evaluated 

the percentage of values (θt
n,i) lower than a given 

threshold in meters (β). In addition, from each tat
n,i is 

assessed the time spent during the i-th visiting sequence 

inside the n-th area (permt
n,i) as the difference between 

the last and the first timestamps of the array. These two 

introduced parameters, namely θt
n,i  and permt

n,i, are 

strategic to assess whether the t-th tag during the i-th 

visiting sequence solely passed through the n-th area. 

For this purpose, the red rhombus checks if θt
n,i  and 

permt
n,i are greater than the related percentage (ρ) and 

unit of time (γ) thresholds.  Whether this condition is 

verified,  perm*t
n,i, pa*t

n,i and  ta*t
n,i  are equal to permt

n,i, 

pat
n,i and  tat

n,i, respectively.  Otherwise, the star 

parameters are equal to zero. Based on this condition-

based assignment, the I visiting sequence in a given area 

is conceptually divided into transits and process-driven 

tasks. The process driven category groups value-added 

operations and withdrawal and deposit of materials 

(e.g., raw and finished).  Therefore, comparisons 

between perm*t
n,i  and permt

n,i exploit the relevance of 

area transits during the working shift. On an aggregated 

viewpoint, TRt
n and PDt

n exploits the difference among 

the transits and the process-driven tasks for the entire 

shift.  

The final step of the proposed software leverages the 

parameters in which the i-th visiting sequence does not 

involve a transit in the n-th area. The target is to 

determine the number of flows between areas solely for 

the process-driven tasks. Therefore, given a  perm*t
n,i  

greater than zero, the algorithm looks for the following 

i-th visiting sequence with a time spent inside the n-th 

area greater than zero as well. To avoid confusion, the 

second detected perm*t
n,i  changes its indices from i and 

n to i" and n”, respectively. Of course, i" still belongs to 

the set I and is greater than i. The same reasoning can be 

applied for n”. After changing the indexing, the relevant 

parameters are updated accordingly (e.g., at
n”,i”, pat

n”,i”, 

tat
n”,i” and permt

n”,i”). Finally, the algorithms increases by 

one the counter of the flows between the area n and n” 

(vt
n,n”). These vt

n,n” form a widely adopted decision-

making tool in manufacturing, the from to chart table of 

material flows handled by human operators in the 

monitored job shop. Benefitting from the rate of 

interdependencies among areas, plant supervisors may 

trigger a re-layout process aimed at placing close to 

each other areas with the highest vt
n,n”. 

IV. CASE STUDY 

The described HW and SW architecture is validated in a 

manufacturing company in the North of Italy which 

performs mechanical operation for the automotive 

industry. The layout of the monitored job shop is 
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outlined below in Fig. 3. For an effective 

implementation, six ANs were deployed in the layout at 

an height of 7 meters to cover a plan area approximately 

equal to 236 . Before starting the experimental 

campaign, examples of acquired data and beta 

quantitative metrics were shown to human operators. In 

addition, 6 tags with a progressive ID were placed in the 

shared locker room of the mentioned final users. 

Therefore, they were able to autonomously wear the 

choosen tag  in a runner armband on the preferred upper 

arm. Last, to be consistent with the right of privacy, 

workers were fully compliant to sign GDPR modules 

due to the anonymous monitoring process the clear 

target of the experimental campaign.  

 

 

Fig. 3. Time dependent Spaghetti chart in the monitored industrial job 

shop 

 

As depicted in Fig. 3, the two job-shop dedicated 

workers per shift perform their tasks in five 

conceptually different areas. In the value-added (VA) 

area, human operators perform loading and unloading 

activities in two stand-alone machines. In addition, two 

workbenches serve specific purposes in the productive 

cycle. While the left one is dedicated to manual 

rectifications, the workbench behind the machines is 

used for manual deburring. The second area labelled as 

storage 1 (S1) stores both raw materials and finished 

goods in dedicated stock-keeping-units (SKU). On the 

contrary, the third area (S2) solely stocks raw materials. 

Depending on the batch to be processed, SKUs of raw 

materials in S2 may be moved by manual transpallet in 

S1 to reduce the replenishment time. The bottom right 

area of the layout (S3) stores raw materials and full 

SKU of finished goods moved by manual transpallet 

from S1. At the end of the shift, forklifts move these full 

SKU, depending on the batch, to other in-plant job 

shops for further processing. The same is true for 

moving in S1 the batch to be processed. The fifth area 

(H) is hybrid because it stores defective materials and 

two interfaces of the automatic lathes (AL) where to set 

batch-based processing sequences. Since positioning 

accuracies around the AN of this area are quite 

underperforming, in this stage of the research was not 

feasible to further divide H. The time-dependent 

spaghetti chart in Fig. 3 represents an example of 

interdependencies between the previously described 

areas. The different colours associated to each 

geometrical position represent the temporal sequence 

from 11:46:27 to 11:46:46  of a manufacturing activity 

performed by the tagID2 on the 15th of February 2022.  

In particular, blue and red dots describes the start and 

the end of the travelling, respectively. Based on the 

aforedescribed method to detect transits in areas for the 

I visiting sequences, the relevant threshold are set with 

respect to this specific case study. The θt
n,i assess the 

percentages of  values in the respective distt
n,i lower or 

equal to 0.1 meters (β). In addition, ρ and γ are equal to 

31% and 5 seconds, respectively. At this point, the 

proposed algorithm enhances the knowledge about the 

travelling activity depicted by the spaghetti chart (Fig. 

3). The operator that wears the tagID 2 is detected twice 

within S1 in the considered 21 seconds. While during 

the outward travelling perm2
S1,i  and θ2

S1,i are equal to 

2.88 seconds and 7,4%, during the return travelling 

these two parameters are equal to  4.37 seconds and 

27%, respectively. Therefore, these travelling activities 

are labelled as transit in S1 and their respective 

parameters (e.g., perm*2
S1,i, pa*2

S1,i , ta*2
S1,i, etc.) are set 

equal to zero. The same is not valid for the i-th visiting 

sequence in S2. Here,  θ2
S2,i and perm2

S2,I are equal to 

40% and 8.3 seconds. Indeed, this activity belongs to 

the process-driven tasks. Considering that S2 stores 

solely raw materials, the journey of the tagID started in 

VA to pick-up at greatest two raw materials in S2 to be 

loaded in one of the stand-alone machines in VA. 

Consequently, v2
VA,S2 and v2

S2,VA are both incremented 

by one. To not burden the Fig. 3, the points in VA are 

only a subset of the actual ones acquired for this 

replenishment route. Moreover, since different 

operations are performed in VA, the i-th visiting 

sequences in this area always verify the red condition in 

the developed algorithm (Fig. 2).  Finally, based on 

the viewpoint placed in Fig.3, the Fig.4 illustrates 

the layout of the areas S1 and VA in the monitored 

job shop. Trivially, each SKU stores a variable 

number of WIP materials or finished good 

products related to a specific batch. The other 

storage areas are similarly designed.  
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 Fig. 4. Layout of the real production job shop from a static point of 

view 

V. RESULTS & DISCUSSION 

This section presents the results achieved adopting the 

proposed digital architecture for the mentioned 

industrial job shop. With respect to the developed SW 

part, the analysis provides quantitative metrics to 

enhance the visibility of the  production process with 

different degrees of detail. At first, from an aggregated 

viewpoint, two from to chart tables (Table I and Table 

II) exploit the rates of interdependencies between areas 

for each tagID from 10:00:00 to 12:30:00 on the 15th of 

February 2022. These rates are expressed in travelling 

activities from a given area to a specific one. Of course, 

both tables have the main diagonal equal to zeros 

because is physically and conceptually impossible 

travelling from an area to the same one. In addition, as a 

reminder, a specific  vt
n,n” is incremented by one 

whether consecutives  areas (at
n,i and a*t

n”,i"),  belonging 

to  the areas  n and n”  during the visiting sequences i 

and i", have perm*t
n,i and perm*t

n”,i”  greater than zero. 

Therefore, since tables are updated solely with flows 

among areas with the visiting sequences that belongs to 

the process-drive tasks, they may be not symmetric.   

TABLE I 

FROM TO CHART OF THE TAGID 1 FROM 10.00.00 TO 12.30.00 ON THE 

15TH
 OF FEBRUARY 2022 [NUMBER OF TRAVELLING ACTIVITIES] 

 VA S1 S2 S3 H 

VA 0 18 0 0 3 

S1 20 0 0 2 0 

S2 0 0 0 0 0 

S3 0 1 0 0 0 

H 1 2 0 0 0 

 

Despite the difference in terms of absolute number of 

flows among the tagID (Table I and Table II), the 

pattern of travelling activities are fairly similar. It 

emerges a strong rate of interdependency between VA 

and S1. This may be also affected by a strong 

commitment by in-plant workers. For instance, v2
S1,S3 

equal to  3 flows and v2
S3,S1 equal to 4 flows suggest that 

full SKU of finished goods material are moved from S1 

to S3 and replaced by empty ones. The same reasoning 

may be applied with raw materials and other areas based 

on what kind of goods stock.  It is worth noting that this 

is solely a hypothesis due to the adoption of one kind on 

sensor. For this purpose, in these cases may happen also 

a single picking or deposit of raw materials or finished 

goods, respectively.  

TABLE II 
FROM TO CHART OF THE TAGID 2 FROM 10.00.00 TO 12.30.00 ON THE 

15TH
 OF FEBRUARY 2022 [NUMBER OF TRAVELLING ACTIVITIES] 

 VA S1 S2 S3 H 

VA 0 46 1 0 3 

S1 47 0 3 3 2 

S2 1 2 0 1 0 

S3 0 4 0 0 0 

H 2 4 0 1 0 

 

However, the developed from to chart are static and thus 

do not exploit the time-dependent pattern for the 

occurred visiting sequence. Therefore, to enhance the 

consistency of the decision-making process the Gantt 

chart in Fig. 5 exploits the visiting pattern within the 

different areas of the monitored industrial jobshop from 

10:00:00 to 12:30:00 on the 15th of February 2022. 

Similarly to the previously analyzed  vt
n,n”, this 

managerial tool considers solely the visiting sequence 

with perm*t
n,i greater than zero. As depicted in Fig. 5, 

both tagID spend the vast majority of time within VA. 

In addition, as expected, the vast majority of flows from 

VA goes to S1 and then return in VA.  

 

 

 Fig. 5. Gantt chart of workers activities from 10.00.00 to        

12.30.00 on the 15th of February 2022  

 

Of course, this tool offers to plant supervisors the 

possibility to narrow the time window and hence the 

analysis. Based on the dashed lines in Fig.5, the 

following Gantt in Fig. 6 depicts the process-driven 

visiting sequences from 10.08.31 to 10.10.35.  Despite it 

is difficult to assess       what activity is performed in a 

particular region of the job shop, the description of areas 

and the time spent within them reduce a few the 

uncertainty. While the flows between VA and S1 

suggest a picking or a deposit of material, the flow from 

VA to H along with a perm*2
H,i equal to 12 seconds 

advise a deposit of defective materials. In addition, the 
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following travelling activities may suggest a picking of 

raw materials to be loaded in the stand-alone machines 

in VA.  

 

 

 Fig. 6. Gantt chart of workers activities from 10.08.31 to 

10.10.35 on the 15th of February 2022 

 

To conclude, plant supervisors may integrate the 

presented structured output with process data (e.g., 

pieces manufactured per shift, machines failure, etc.) to 

achieve a deeper  visibility on the process functioning. 

In this regard, optimization models may be leveraged to 

quantitatively schedule the batch sequencing and trigger 

a re-layout process.  

VI. CONCLUSION & FURTHER RESEARCH 

This paper describes an original digital architecture 

aimed at monitoring manual production processes. 

While the HW part acquires time dependent positioning 

data, the software part leverages values inside them. 

Therefore, the defined from to chart table of material 

flows performed by human operators defines the rate of 

interdependencies between the areas. In addition, the 

Gantt chart exploits an activity segmentation of workers 

routines within a selected time window. These outputs 

provide to decision-making processes a quantitative 

path upon which trigger a tailored re-layout process. 

Further research should increase the reliability and 

accuracy of acquired data in the mentioned 

underperforming areas with structured tracking filters 

outlier detection techniques. Besides, a sensor fusion-

based approach may be adopted to further reduce the 

uncertainty of the monitored activities. Benefitting from 

other parameters, the detection of process-driven tasks 

would be further enhanced. On the production analysis 

level, a weighted from to chart for loading and 

unloading activities and advanced techniques to forecast 

travelling among areas on the short term may be 

proposed.   
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