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Abstract: Vision systems are being increasingly used in the digitalization process of industrial and manufacturing plants. 

Among them, marker-less Motion Capture (MOCAP) technology represent a valuable tool since it frees human operators from 

uncomfortable equipment on their body, allowing them to perform their activities as normal. We are currently implementing 

this technology at the Industrial Plants and Logistics Laboratory of the University of Padua, by applying a set of Intel Realsense 

depth cameras to a manual workstation and by linking them with a skeleton tracking software. The aim is to create a closed 

control loop that can monitor the activities performed by a human operator, offering real-time feedback. In this work we present 

a framework that describes the functioning of the closed loop and we present an example of its laboratory implmentation 
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I. INTRODUCTION 

Industry 4.0 (I4.0) has changed the shape of many 

factories worldwide. Lasi et al. (2014) define Industry 4.0 

as a combination of two main mechanisms: an 

application pull, which combines a set of social, 

economic and political changes (ranging from 

individualization on demand to flexibility), and a 

technological push. The latter can be summarized in three 

main approaches: increasing mechanization and 

automation, digitalization and networking and 

miniaturization. The technological aspect, in particular, 

has acquired paramount importance within the Fourth 

Industrial Revolution. Many lists of I4.0 technologies are 

present in the literature. For example, Russmann et al. 

(2015) indicate nine enabling technologies: 1) 

Autonomous Robots, 2) Simulation, 3) Horizontal and 

Vertical Systems Integration, 4) Industrial Internet of 

Things, 5) Cybersecurity, 6) Cloud Computing, 7) 

Additive Manufacturing, 8) Augmented Reality and 9) 

Big Data and Analytics. Other more complex and 

structured lists exist, such as the one proposed by Frank 

et al. (2019), which indicates up to 33 different 

technologies, dividing them into four main groups: Smart 

Manufacturing Technologies, Smart Working 

Technologies, Smart Product Technologies and Smart 

Supply Chain Technologies. However, among the many 

existing lists, vision systems are not often cited despite 

their widening adoption and their promising results, as 

stated by Cohen et al. (2019). These systems are used 

both in human and robotized production systems. One of 

the most recently developed type of vision systems is 

Motion Capture (MOCAP). MOCAP is being used to 

digitalize some of the most difficult processes to be 

digitalized within a factory: manual processes. This fits 

perfectly within the digitalization and networking 

approach mentioned by Lasi et al. (2014). The increasing 

automation and the wide availability of technological 

instruments might call for an elimination of manual 

processes. However, in certain activities, the dexterity 

and cognitive abilities of a human operator are still 

unmatched by robots or automatic systems. For this 

reason, Industry 4.0 technologies, and MOCAP in 

particular, should be introduced alongside human 

operators, as collaborative elements.  

In this paper we present a novel framework for a closed 

loop control system of a human operator. The aim of the 

control loop is to offer constant real-time feedback on the 

task sequence of an assembly procedure that is being 

performed by the operator. The online feedback system 

is well suited for an application of the implemented 

framework to support and control a human worker: this 

is the research area where the complete system is 

supposed to be applied. Support is meant as guidance 

before a certain task or activity while control is intended 

as monitoring after a task. 

The rest of this work is organized as follows: Section II 

presents a literary review of the main contributions on the 

topic, Section III introduces the framework and describes 

each one of its steps, Section IV presents an example of 

a partial laboratory implementation of the framework, 

Section V defines the next steps of the research work and 

Section VI offers the final conclusions. 

II. LITERARY REVIEW 

According to Moeslund and Granum (2001), human 

motion capture can be defined as the process of capturing 

the large-scale body movements of a subject at some 

resolution. Human motion capture has three main areas 

of application: surveillance, control and analysis. The 
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surveillance area covers applications where one or more 

subjects are being tracked over time and possibly 

monitored for special actions; the control area relates to 

applications where the captured motion is used to provide 

controlling functionalities; the third application area is 

concerned with the detailed analysis of the captured 

motion data. 

Menolotto et al (2020) conducted a systematic literary 

review of the industrial applications of motion capture 

techniques. MOCAP industrial techniques were divided 

in two main groups: IMUs (Inertial Measurement Unit) 

and camera-based systems. The latter group was further 

divided in two subgroups: marker-based and marker-less. 

The study also showed that, among the 59 analysed 

contributions, only 6 of them focused on workers’ 

productivity improvement.  

Literature provides a variety of examples of camera-

based marker-less motion capture systems in the 

industrial sector: Geiselhart et al (2016) adopted a multi-

depth camera approach, based on Kinect v2 cameras, the 

Time-of-Flight principle and a skeletal tracking module. 

The flexibility and scalability of the proposed solution 

allows it to be used for production planning purposes; 

Otto et al. (2016) offer an example of application of 

marker-less motion capture in the automotive sector: 

multiple depth cameras are combined with different 

virtual and augmented reality tools to assess the 

progression of manual assembly tasks. The different 

combinations of systems are applied to different areas, 

such as accessibility and ergonomics assessment, 

interactive station layout planning and verification of 

assembly routines; Rodriguez et al. (2015) developed 

another combination of motion capture and mixed reality, 

although on a smaller scale: the operator is guided in the 

assembly tasks by a light projector, while only the hand 

movements on the workbench are tracked.  

As suggested by the previous examples, the feedback to 

the operator is usually provided through augmented or 

virtual reality solutions. This is also shown in Dalle Mura 

et al. (2016), Sand et al. (2016) or Faccio et al. (2019).  

A more limited amount of works explores the adoption 

of a combination of motion tracking and a feedback loop 

to the training of manual assembly tasks in the industrial 

sector.  

Among these contributions, Muller et al (2016) 

developed SAW (Smart-Assembly-Workplace), which is 

designed to address the problem of knowledge transfer of 

assembly procedures between companies or subsidiaries 

located in different countries. The system is specifically 

designed to transfer knowledge on the assembly 

sequence of a bicycle e-hub to workers with very limited 

experience. The SAW adopts a Microsoft Kinect camera 

located on the top of the workstation to track the 

operator’s hands. The SAW is also provided with an LCD 

screen which is meant to show work instructions. An 

expert worker defines the correct task sequence, picking 

sequence and the locations of the assembly tasks on the 

workbench. The expert’s work sequence is also measured 

through the MTM (Methods-Time Measurement) theory, 

defining the ideal cycle time. Then, the unskilled worker 

will learn the assembly procedure at the SAW: 

instructions will be provided on the LCD screen, the hand 

movements will be tracked by the Kinect and compared 

with the movements of the expert operator, providing an 

error message any time a deviation appears. The 

unskilled operator will also be evaluated in terms of cycle 

time, comparing it with the standard time set by the 

expert. Despite resulting in longer cycle times compared 

to a traditional paper-instructions-based assembly 

process, the live-feedback with respect to the correct 

assembly sequence was deemed as a key benefit of SAW.  

Kubo et al. (2019) focused on high-skill manual 

operations: a training system for metallic painting was 

developed. Knowledge transfer in metallic painting is 

particularly complex and the learning curves for 

beginners are particularly shallow. In this case, marker-

based motion tracking was applied, with the aid of 34 

sensors placed on the body of two expert operators and 

one beginner. At first, an analysis of the difference 

between the poses of the expert and the beginner was 

conducted. The output of the analysis was used to define 

a novel knowledge transfer system: the movements of an 

unskilled worker are compared in real time with the 

movements of an expert painter, and live feedback is 

provided in case of error. 

Hodaie et al (2018) introduced a framework for the 

development of an intelligent tutoring system dedicated 

to manual activities. Manual work in factories is 

characterized by two main aspects: 1) manipulation of 

physical objects, performed either by hands or with tools, 

2) a procedure than needs to be followed, either reading 

instructions, shadowing an expert operator or by simple 

knowledge of the task sequence. The authors define a 

manual-procedural activity as a sequence of multiple 

steps that must be performed in a specific order, with 

each step involving manipulation of physical objects. 

Therefore, learning a manual procedural activity involves 

acquiring both procedural knowledge about the steps as 

well as motor skills for manipulating objects. A system 

that acts as a trainer for manual procedural activities 

should hence provide guidance through the steps and 

offer personalized feedback in case of error. The 

proposed solution has two modules: an expert module, 

that is used to track the movements of an expert operator, 

and a trainee module. In the latter, an unskilled worker is 

guided through the procedure by instructions projected 

on the workbench and is offered constant feedback based 

on motion tracking of the hand movements performed by 

a depth camera.  

In this context, we propose a novel framework for a 

control loop of a manual operator. Camera-based marker-

less motion capture is at the core of the framework since 

it is used to track the operator’s movements: it is 

implemented through a combination of depth cameras 

and a skeleton tracking software. The system follows the 

Control Volumes (CVs) approach, introduced by Faccio 

et al. (2019). This approach gives flexibility to the 
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framework, since the definition of the CVs can be 

decided a priori, by an expert operator or even by an 

unskilled worker. Finally, the real-time feedback allows 

the framework to be applied for training and support and 

control purposes.  

In terms of the proposed novelty, this work falls within 

an understudied area of application of MOCAP 

techniques, as mentioned by Menolotto et al (2020). 

Within this area, the novelty of this paper lies both in the 

approach, through the definition of a real-time control 

loop based on control volumes, as well as its application 

to training and support and control of a human operator 

in a manual workstation.  

III. THE FRAMEWORK 

The proposed framework is shown in Figure 3, shown in 

Appendix A. This framework provides the main steps 

towards the definition of a control loop for manual 

assembly processes performed by human operators. The 

loop is implemented through a combination of software 

and hardware and is based on the introduction of a set of 

Control Volumes: the operator’s position, the location of 

the control volumes and the task sequence are compared 

and, according to the results, a real time feedback is 

offered to the operator.  

At the centre of the control loop there is a human operator 

who is performing an assembly process on a manual 

workstation. The assembly process that most ideally 

would fit with the proposed control volume approach is a 

process with a high frequency of picking activities or 

where different tasks need to be performed in different 

areas of the workbench. The adoption of vision systems 

eliminates the need to wear uncomfortable equipment, 

allowing the operator to move freely without restrictions.  

A set of depth cameras are used to record the operator’s 

movements within the workspace. According to the 

specific characteristics of the work cycle, a single camera 

or a multi-camera layout is adopted. A single camera can 

work if the performed activities are limited to the 

workbench and there is very little obstruction: it may 

work for assembly operations where the focus is only on 

the hands, arms or upper body. A multicamera setup, on 

the other hand, works very well in case of physical 

obstructions and can enlarge the monitored area: 

depending on the single depth camera performance, a 

working area of at least 2×2 m can be monitored. In this 

way, it is possible to track not only simple assembly tasks 

that are performed on the workbench but also picking 

activities from storage locations which are placed behind 

the operator’s shoulders or outside the workbench. 

However, a multi-camera setup brings with it more 

complex calibration, synchronization and fusion 

procedures.  

Based on the stream of frames provided by the depth 

cameras, a skeleton tracking software is applied to 

capture the operator’s movements in the working area. 

The operator’s body is discretized in a set of keypoints 

that represent important body parts or joints. This allows 

to estimate in real time the pose of the operator: in 

particular, the output of the application of the skeleton 

tracking software are the coordinates (x,y) of the 

keypoints which represent the operator’s pose. Generally, 

many skeleton-tracking software can also give 3D pose 

information. As a matter of fact, this data is reconstructed 

according to a combination of the pose and the values of 

the other two coordinates, x and y. This estimation, 

however, lacks precision: therefore, in the framework 

coordinate z is measured by the depth cameras.  

Depth is measured by the cameras for the entire frame. 

What matters in this case, however, is the depth 

estimation of the keypoints of the model for the 

operator’s body. As a consequence, an additional step at 

software level is required: the keypoints with their (x,y) 

coordinates are superimposed over the frames with the 

depth estimation; each keypoint is then associated with 

the respective depth value. In this way, each keypoint is 

finally associated with a three-dimensional set of 

coordinates, (x,y,z).  

Before introducing the control volumes, that are at the 

centre of this framework, it is necessary to define the 

other input of the control loop: the task sequence. The 

manual assembly operation should be broken down into 

a series of simple tasks, going as deep as defining the 

picking of a certain item from its own container. Then, 

each task is assigned to a certain position on the 

workbench and around that position a control volume is 

defined: for a picking-intensive activity, the control 

volumes should be located around the containers or boxes 

where the items are picked from; moreover, it is possible 

to divide the workbench in different areas and assign 

different tasks to each area: in this case the Control 

Volumes will be located around each one of the defined 

areas. The Control Volumes are simply defined as a set 

of coordinates and can be shaped in different ways: 

spheres, cubes, cuboids etc. The definition of the Control 

Volumes is performed at software level, in order to store 

their coordinates and to quickly transfer them to the 

tracking algorithm. 

Once both the coordinates of the operator and the control 

volumes are available, it is possible to compare them in 

real time. At a given point in time, the position of a 

certain set of keypoints of the operator are tracked and 

compared to the coordinates of the Control Volume that 

is associated with the task that is supposed to be 

performed according to the sequence of the specific 

activity. Two outcomes are possible:  

1) the keypoints are located within the right control 

volume: in this case, a confirmation message is 

sent to the operator, reinforcing the correctness 

of the task sequence that is being followed. 

Moreover, once the task is finished, it is possible 

to provide the operator with a suggestion on the 

subsequent task, indicating the next control 

volume that needs to be addressed 

2) the keypoints are located within the wrong 

control volume: an error message is sent to the 
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operator, possibly with the addition of a 

reminder of the correct sequence to follow.  

The real-time feedback can be delivered to the operator 

in different ways, according to the available technical 

devices, but always keeping the basic requirement of 

offering error and confirmation messages according to 

the relative position of the operator and the control 

volumes. We provide here two examples of possible 

solutions: 

a) A combination of smart wearable wristband and 

workstation-mounted projector: the projector 

indicates the next correct task by projecting the 

correct control volume on the workstation while 

the wristband communicates the successful 

completion of the task to the operator through 

its vibration pattern. 

b) A workstation-mounted screen: the screen can 

show to the operator the control volumes and the 

correct task sequence, as well as prompting 

error and confirmation messages thus offering 

the required real-time feedback.  

The feedback influences the operator, who adjusts his 

behavior according to the received suggestions: the 

movements are again tracked by the depth cameras and 

the skeleton tracking software, closing the control loop.  

Finally, since the cameras and the software can 

continuously track the operator’s movements and 

keypoints and can record the time instant in which a 

certain task is performed, the system is able to extract a 

set of relevant outputs: number of errors performed 

during the entire assembly and for each specific task, task 

duration, spaghetti charts of certain body parts of the 

operator etc. This allows to perform in depth data 

analysis of the assembly process.  

IV. LABORATORY IMPLEMENTATION EXAMPLE 

The framework is general and allows different hardware 

and software combinations to be applied. The control 

loop is currently being implemented at the Industrial 

Plants Laboratory of the Department of Management and 

Engineering at the University of Padua. In this section, 

an example of the adopted software and hardware 

technologies is presented. 

I. Depth Cameras 

The adopted depth cameras are Intel RealSense D435i, 

shown in Figure 1. 

 

 

Fig. 1. Intel RealSense D435i depth camera (Intel® RealSense™ 

Depth and Tracking Cameras., 2022) 

These cameras adopt stereo vision as a means to measure 

depth. Two imagers are the starting point for the stereo 

vision implementation: they are two identical camera 

sensors, one located on the left of the camera and the 

other on the right, with 1920 × 1080 active pixels and 

configured with the same settings. Both imagers capture 

the same frame. The frame data are sent to the vision 

processor of the camera (Intel RealSense Vision 

Processor D4), which is assigned the task of estimating 

the depth values: the same points in the left and right 

image are correlated and then a triangulation approach is 

followed, calculating the depth values depending on the 

shift in pixels between those same points since the 

distance between the left and right imager is known. The 

single depth pixel values are then elaborated and 

converted into a depth frame. The camera has an 

operating range of 0.3m to 10m and it guarantees a depth 

accuracy of 98% for distances lower than 2m.  

At the moment the setup includes just one camera but the 

D435i is already set for multicamera use since it is 

provided with a built-in synchronization mechanism.  

II. Skeleton Tracking Software 

The adopted body pose estimation software is OpenPose, 

which is an open-source real time system for multi-

person 2D pose detection, developed by Cao et al. (2019). 

OpenPose falls within the category of bottom-up 

approaches for pose estimation software:  body parts are 

recognized first as a set of keypoints, which are later 

assembled as limbs according to different association 

techniques (Li et al., 2019). This approach works well in 

the case of multiple subjects in the frame or in presence 

of obstructions. Since many possible obstructions are 

present in a manual workstation, OpenPose represents a 

viable option for the skeleton tracking software choice 

within the framework. 

The input of the software is a color image: it can be either 

a single picture or a frame of a video. The image is then 

fed to a Convolutional Neural Network (CNN) that 

adopts 3 consecutive 3×3 kernels. The CNN jointly 

predicts a set 2D of confidence maps for the detection of 

the single body parts and another set of 2D vector fields, 

called Part Affinity Fields (PAFs), which are used to 

associate the detected body parts. The confidence maps 

and the PAFs are then matched according to a greedy 

inference process, resulting in the full body poses: in this 

way, the 2D keypoints of the figures in the images are 

finally computed. 

The 2D confidence maps are a tool that is used to 

represent the probable position of each one of the 

keypoints that are used to discretize the body of the 

persons in the frame: for each body part, each pixel of the 

frame is associated with the probability of having that 

body part located in that pixel. Given the recognized 

body parts, PAFs are used to assemble the full body poses 

by computing a confidence measure of the association of 

each pair of keypoints: for each pixel located in the area 

belonging to a particular limb, a 2D vector encodes the 

direction that points from one part of the limb to the 
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other. Each type of limb has a corresponding PAF joining 

its two associated body parts. 

Different versions of the body pose estimation model 

exist: MPI, COCO, BODY_25 etc. BODY_25 is the one 

adopted in our proposed implementation: the body of the 

operator is discretized in 25 keypoints, as shown in 

Figure 2. In the proposed control-volume approach, the 

candidate keypoints to track the task sequence 

completion are number 4 and 7, which correspond 

respectively to the right and left wrist.  

 

 

Fig. 2. BODY_25: the 25 keypoints are numbered from 0 to 24 

(GitHub., 2022) 

 

III. ROS  

An internally developed algorithm is exploited to 

integrate the (x,y) coordinates estimated by OpenPose 

with the depth information of the RealSense camera, 

allowing to estimate the 3D position of each body 

keypoint. To ensure real-time performance and enable 

simultaneous use of multiple sensors, the software is 

based on the Robot Operating System (ROS) (Quigley et 

al. 2009). ROS is an open-source meta-operating system 

that includes a large variety of libraries and tools for 

developing software modules that communicate with 

each other in a loosely coupled, multiprocess, distributed 

environment. A ROS-based system is composed of 

nodes, which are processes that perform a computation 

from running algorithms for interfacing with sensors or 

actuating devices. Nodes communicate with each other 

using a publish/subscribe model (i.e., a node that 

produces data publishes them on a named topic). ROS 

takes charge of distributing the data only to the nodes that 

previously subscribed to this topic.  

V. RESEARCH ROADMAP 

As mentioned in the previous section, the implementation 

process of the framework is still undergoing. Therefore, 

the definition of a research roadmap that clearly states the 

future implementation steps and the successive testing 

campaigns is required.  

First of all, the setup of the systems needs to be 

completed, defining all the remaining hardware and 

software implementations.  

Within the setup definition, the first issue that needs to be 

addressed is the decision on the type of software to be 

used for the comparison of the coordinates between the 

operator and the control volumes. The chosen software 

should guarantee high computational performance in 

order not to reduce the frame rate of OpenPose, thus 

maintaining the close-to-real-time control of the 

operator’s position.  

With regards to the feedback system for the operator, 

many options are available, as mentioned in Section III. 

The proposed idea for the implementation is to adopt a 

simple webcam that captures the working area, with a 

specific focus on the zone where the operator’s hands are 

located. This webcam will produce a live stream that will 

be sent to a screen positioned on the side of the 

workstation. The images from the webcam will be 

enriched with a graphical representation of the control 

volumes. The screen will also display the error and 

confirmation messages related to the correct task 

sequence. In such manner, the operator will be provided 

with constant visual feedback. 

The control volumes definition is the last step of the 

implementation of the framework and needs to be tuned 

according to the specific characteristics of the 

experiment. As a matter of fact, the type of object to 

assemble, the number of its components, the lot size etc. 

are all factors that influence the dimensions of the control 

volumes first and consequently their location. Therefore, 

these parameters need to be defined before the creation 

of the control volumes. 

Once the setup is ready and the experimental parameters 

are clear, the campaign can start. The idea is to study how 

such a control loop can influence the learning path of a 

manual operator. In particular, the focus will be on the 

comparison between an operator who performs the 

assigned assembly tasks with the aid of paper instructions 

and an operator who is subject to the feedback of the 

proposed control loop. They will be analyzed in terms of 

performance, especially through their respective learning 

curves. The design of the experiments will also influence 

the set of output parameters to be extracted from the loop. 

VI. CONCLUSIONS 

In this paper we presented an original framework for the 

definition of a control loop of a manual operator. A 

workstation is digitalized with the aid of one or more 

depth cameras which, in combination with a skeleton 

tracking software, provide the spatial coordinates of the 

human operator. Those coordinates are then compared 

with the positions of a set of pre-defined Control 

Volumes, which are used to track the task sequence 

progression. Real-time feedback is provided to the 

operator: an error message is sent if the operator is 

working on the wrong Control Volumes while a 

confirmation message and the suggestion of the next step 
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are prompted if the task sequence is correct. The 

implementation of a system that follows the guideline of 

the framework is currently underway at the Industrial 

Plants Laboratory of the University of Padua. According 

to the research roadmap, the complete system will be 

applied to study the learning curves of manual operators 

in presence of a real-time feedback.  
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Appendix A. FRAMEWORK REPRESENTATION 

 

 

 

 

Fig. 3. Framework for a closed loop of a human operator in a manual workstation 

 


