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Abstract: Prognostic Health Management (PHM) is a recent approach for the realization of Predictive Maintenance. 
In literature, there are many papers dedicated to that topic, as well as to each of its part, i.e. signal processing, feature 
extraction, diagnostic and prognostic. However, when approaching to complex systems operating in real industrial 
contexts, there are several problems that make difficult its application. First, sensors positioned on the machinery 
couldn’t have been thought for maintenance purposes. From PHM-application point of view, this could lead to a time-
consuming data pre-processing activity, due to (1) a huge unnecessary amount of data, collected at high frequencies 
and (2) their intermittent collection during the machinery tests. Second, machinery often work under different 
operating conditions, that may depend on the kind of product or material that they process; they are often spread 
worldwide, so the same operating condition could be actually implemented in slightly different ways based on the 
geographic area the plant is installed in. Operating conditions may be unknown during the data collection and even if 
they are known for a specific machinery, they could change for another machinery, resulting in the impossibility to 
adopt a same feature, or set of features, and a supervised algorithm for diagnostic for the same machinery. In this 
paper, a methodology for data pre-processing, feature extraction and condition recognition is introduced through a 
discussion on a real case study. In particular, the data pre-processing takes into consideration both the quantity and 
the intermittent nature of collected data, by conducting sampling activities, detecting unstable conditions and setting 
them apart from subsequent classification; feature extraction and class recognition are conducted automatically, 
adaptively, and in real-time, so to always know the condition under which machinery is operating and ultimately to 
make easier the real-time anomaly detection and prognostics. 

Keywords: Prognostic Health Management; data pre-processing; semi-supervised learning; real-time 
diagnostic

1. Introduction 

As one of the main pillars of industry 4.0, Predictive 
Maintenance (PM) is attracting more and more attention 
from all the community of researchers and industries. The 
main advantage of such a strategy is the possibility to 
optimize the scheduling of maintenance interventions, not 
only based on historical data of critical components, but 
also on their actual health condition, so to exploit their 
whole life, until they actually do not have the ability to work 
properly. As a result, the economic advantages of a planned 
maintenance, e.g., the reduction of the costs related to a 
maintenance intervention, come also together with those 
related to a maximum exploitation of the tangible assets 
and to a better management of spare parts (Mobley, 2002). 
In other words, all maintenance activities could be 
positively influenced by the introduction of predictive 
strategies.  
The fundamental requirement for the application of 
predictive maintenance is the installation of sensors on 
critical components of a certain machinery, through which 
data related to its health condition can be collected. Then, 
as one of the most important approaches discussed in 
literature suggests, named Prognostic Health Management 
(PHM), several Machine Learning (ML) algorithms can be 
used in order to (1) extract relevant information from raw 
data, (2) find the relationships between that information 

and the condition or life stage in which the component or 
the whole system is, (3) build a degradation model that 
allows to predict its Remaining Useful Life (RUL). These 
steps are usually referred as feature extraction or Health 
Indicator (HI) construction, Diagnostic or Health Stage 
division and Prognostic or RUL prediction (Lei et al., 2018).  
Although in literature there are many papers about PHM 
and its application, most of them use data collected during 
lab tests, thus in a controlled environment. Controlled 
environments, here, means that the data analyst will be 
provided with all information related components or 
systems under analysis, such as the environmental 
conditions, the operating conditions of the system or the 
faults that have been simulated during the test. On the 
other hand, it also means that tests could be designed to 
train a specific analysis model, and therefore the collected 
data is far from reality. For these reasons, industries find 
big issues when approach to the implementation of PHM 
in their plants. In particular, very often, has to be 
performed on machinery provided with sensors designed 
for other purposes, e.g., process control. The data 
acquisition is not performed continuously, but only during 
machinery testing or according to technicians needs. As a 
result, the dataset could be unstructured, intermittent and 
unlabelled: 

1. Unstructured means that data are collected and 
extracted in different ways, i.e., from different sources 
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and with different frequencies, which makes their 
processing a very hard task (Lu et al., 2017); 

2. Intermittent means that the available data do not allow 
to have a direct comprehension of what happened 
during the life of the monitored system, but just in 
some time slots, making difficult to correlate the values 
assumed by each variable (signal extracted from 
sensor) and physical phenomena they are describing; 

3. Unlabelled  means that data are not associated with the 
condition they refer, which makes difficult to 
distinguish different operating conditions and health 
conditions from fault conditions, leading this way to 
possibly erroneous conclusions (Calabrese et al., 2018).  

Besides those peculiarities of the datasets collected from 
the fields, there is also an important factor that 
characterizes industrial plants, that is its dynamic nature. In 
this context, to operate in dynamic environment means that 
even if at a certain time, all operating and fault conditions 
are known for all components and systems, they will not be 
stable for a long time. New product variants can be added 
anytime, which influence the machinery behaviour and 
settings. Furthermore, environmental conditions influence 
machinery behaviours, so that machinery operating in 
different seasons or in plants that are spread worldwide 
behave differently (Ye, Hong and Xie, 2013). 
Given that, the immediate conclusion is that traditional 
supervised and batch PHM approaches cannot be directly 
applied by an industry that is moving its first steps towards 
predictive maintenance. As a consequence, other solutions 
should be found. In (Calabrese et al., 2019), we have 
demonstrated as online and incremental learning can help 
achieving a real-time anomaly detection. Here, anomaly 
stands for a change from the current condition, which may 
correspond to either a new operating condition or a fault 
occurrence. In this paper, we tackle the problem of 
transformation of raw data into information that feed 
incremental and adaptive learning models. In particular, we 
focused on two main tasks: 

1. The incremental transformation  from raw data to 
information, so to always extract the best relevant 
features even when the operating condition is not 
known a priori 

2. The improvement of the methodology presented in 
(Calabrese et al., 2019), so that it does not only allow 
to detect anomalies and new conditions, but also to 
recognize that the system is entering a well-known 
condition and thus assign points to existing cluster, 
accordingly. This can be considered an automatic 
labelling of observations.  

The application of incremental learning to both feature 
extraction and fault detection allow models to be “trained” 
on the available data only, and then applied in streaming, to 
the same machinery, or to other machinery operating in 
different industrial contexts. At the same time, a real-time 
labelling is performed, so that proper degradation models 
for RUL prediction can be selected and more accurate 
batch analysis can be done when enough data is available.  
The remaining of this paper is structured as follows. In 
section 2, a brief literature review on feature extraction 

methods is provided, mainly focusing on dimensionality 
reduction methods. In addition, the theoretical background 
of incremental Principal Component Analysis (IPCA) is 
provided. In section 3, a brief overview on incremental 
anomaly detection and clustering is presented, and the built 
algorithm described. In section 4, an industrial case study is 
presented, which confirms the strength of such an 
approach. In addition, some of the characteristics that 
datasets should have for being processed in streaming and 
provide good results are also pointed out. Finally, 
conclusions and potential weaknesses arose from the 
application of the proposed approach will also be 
highlighted, which will be the focus of future research on 
this topic. 

2. Incremental feature extraction 

Very often, when tackling pattern recognition tasks, large 
datasets, with a huge number of variable (columns), need 
to be processed. In the industrial filed and in relation to the 
predictive maintenance activities, variables of a datasets are 
represented by signal collected from sensors installed on 
machinery. When the number of sensors is high, it is not 
trivial to understand correlations between variables and 
operating conditions. Dimensionality reduction techniques 
can help reducing the complexity of the problem by 
extracting relevant and non-redundant information, so to 
increase the accuracy of classification or prediction of ML 
algorithms.  
Dimensionality reduction techniques can be classified into 
feature learning methods and feature selection methods, 
based on whether they change or not the original feature 
space (Tang, Alelyani and Liu, 2014). Here, we focus on 
feature learning, as it can be applied to datasets without 
label, thus in a unsupervised way. Feature learning is the 
process of projecting the original feature space into a new 
feature space with lower dimensionality.  
One of the most adopted feature learning methods in the 
context of fault diagnosis is the Principal Component 
Analysis (PCA) (Zhu et al., 2018), which results to be very 

effective. Given a dataset X, of dimension 𝑚, PCA aims to 

find a set of orthonormal basis vectors of dimension 𝑝 <
𝑚, which are called Principal Components (PCs), that 
maximize the variance over the dataset when it is projected 
onto the subspace spanned by these PCs. Basically, if we 
have data points in a two-dimensional space and we want 
to project them in one-dimensional space, what PCA does 
is to find the direction of the vector and the position of the 
points on that vector, which is expressed by coefficients, 
such that the reconstruction or projection error is 
minimized (Fig.1). To this aim, the covariance matrix of the 
dataset is first computed, from which the eigenvalues and 
the eigenvectors can be extracted. The eigenvectors 
correspond to the PCs, while the eigenvalue of the 
corresponding eigenvectors represent the variance 
associated to that PC. The PCs are selected so that the 
cumulative variance described by them is greater than a 
certain percentage (usually, from 90 to 99%).   
PCA, as well as other dimensionality reduction techniques, 
are usually applied to batch data. This means that, at the 
time of the analysis, the dataset is fully available. However, 
if operating or fault conditions vary over time and are not 
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known a priori, dimensionality reduction techniques may 
fail in extracting features that distinguish a new occurring 
condition. Rather, feature learning should be incremental 
and adaptive, so that when a new condition occurs, features 
that better characterize it, can be extracted.   
When applied to streaming data, most important challenges 
are the following (Fujiwara et al., 2020). First, the 
computation time needs to keep up with the data collection 
rate, meaning that the time for computing and updating the 
positions of data points has to be done before a new point 
is collected; second, when data is collected from different 
data sources, not all variables could be available at the same 
time, resulting in observations with varying dimensions. In 
(Diaz-Chito, Ferri and Hernández-Sabaté, 2018), a 
complete taxonomy of linear subspace incremental learning 
methods is provided and a comparison among methods has 
been done on different datasets. These methods perform 
well on streaming data, but still have some strict 
requirements on the kind of datasets that need to be 
processed.  
In (Lippi and Ceccarelli, 2019), an exact incremental 
implementation of PCA is presented. As the authors state, 
exacts means that it provides the same results, i.e., the same 
PCs as in the batch version. In addition, it also contains an 
online data normalization, which is fundamental when 
variables assume very different values. Basically, the 
difference between the batch PCA and its incremental 
version formulated in that paper lies in the covariance 
matrix computation, which is recursive. In the incremental 

version, at a certain time 𝑡 + 1, such a matrix is computed 

for 𝑛 + 1 points, starting from the matrix computed for 

previous 𝑛 points and including the new point 𝑥 + 1. The 
authors also provided the algorithm for its implementation, 
which is available on the Mathworks website. 

3. Incremental clustering  

Clustering is a kind of unsupervised learning, used when no 
labelled data is available. Instead of predicting the class of 
a certain observation taking the target value into 
consideration at the prediction moment, unsupervised 
learning aims to find some structures in data and grouping 
them accordingly (Datta, A, Mavroidis, C, Hosek, 2007). 
Clustering algorithms group the data into clusters, so that 
that the distance, (the similarity), between points belonging 
to the same clusters is minimized (maximized), while the 
distance between different clusters is maximized 
(minimized). Since they do not need the target variable to 

be specified while learning, they are particularly suitable for 
streaming and online applications.  
In general, clustering algorithms are classified into 5 main 
categories (Warren Liao, 2005): hierarchical methods, 
partitioning methods, density-based methods, grid-based 
methods and model-based methods. Although they work 
well, they generally require to know the number of clusters, 
whose shape is also defined, e.g., spherical. At the contrary, 
in streaming applications, the number of cluster could vary 
as new point is available and the shape of each cluster 
cannot be fixed, as the structure of the data is unknown.  
In (Costa, Angelov and Guedes, 2015), a new paradigm has 
been developed for incremental clustering. It is based on 
the concepts of Recursive Density Estimation (RDE) and 
clouds, defined as free-shape clusters. Basically, it compares 
the global density, i.e., the density of all the points available 
up to a certain time stamp, with the local density, i.e., the 
density of all points since an anomaly had been detected up 
to the same time stamp, to decide whether the current point 
is still anomalous or can be considered normal and should 
create a new cloud. 
In a previous work (Calabrese et al., 2019), we applied 
anomaly detection algorithm (AAD) (Gu and Angelov, 
2017) and the incremental clustering (ADP) (Gu, Angelov 
and Príncipe, 2018) together to recognize that a 
degradation was occurring and divide the whole life of the 
monitored components in a different life stages, in which 
the degradation was severer and severer.  

Here, the algorithm has been improved to make it capable 
of assigning points to existing clusters, which corresponds 
to recognize a known condition. The flow diagram of the 
modified algorithm is depicted in Fig. 2. In addition, the 
incremental PCA has been included instead of energy 
feature extraction.  

Basically, the algorithm, at each iteration, reads a sample, or 

a chunk made of 𝑘 samples, computes the covariance 
matrix and selects the PCs that explain the 90% of the 

Fig. 1 Dimensionality reduction by PCA 

Fig. 2 The modified flow diagram of the proposed algorithm 
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variance of the whole dataset. From here on forward, the 
vector of one observation, containing a number of variables 
equal to the selected PCs is considered as the feature which 
anomaly detection and clustering are based on. The first 
thing is now to check if the status of the system is set to 
normal or anomalous. In the first case, the global and local 
densities are compared in order to decide whether the 
current point is anomalous or normal. If normal, it is 
assigned to the current cluster, whose local parameters are 
updated. Otherwise, the nearest cluster represents a 
potential cluster for the current point. However, if the 
distance between the current point and the centre of this 
cluster is greater than the distance between all points read 
until now, the point creates a new cluster, whose local 
parameters are initialized. At the same way, when the status 
is detected as anomalous and the current point is still 
considered anomalous, then it is automatically assigned to 
the current cluster. Otherwise, the condition for assigning 
the point to the existing cloud or to a new cloud is checked 
again. That decision concludes the algorithm, which goes 
to the next iteration.  

4. Case study 

A case study of an automatic machinery is here presented. 
The focus will be on one of the components of machinery, 
which is subject to a very slow degradation. Since the 
machinery is designed to work with different kinds of 
materials, its operating conditions, which we call settings, 
may vary depending on the product to be produced. 
Accordingly, the degradation rate varies. Therefore, to 
compute the RUL based on the current degradation rate, it 
is fundamental to know at any point in time which values 
the machinery is set to. However, not all settings are known 
a priori. They are continuously modified, and each machine 
user can implement a setting depending not only by the 
product but also by the environmental conditions of the 
plant in which it is installed in.  
The component is provided with 31 sensors, which 
measure the temperatures in different zones, as well as the 
percentage of use of thermo-resistors that are placed in 
each zone. In addition, the percentage of use and power of 
two electrical motors are also measured. All signals 
collected from the component are depicted in Fig. 3. 
No one of these signals explain the setting changes by itself. 
Thus, feature extraction will be performed to reduce the 
dimensionality of the dataset and find the features that best 
explain the differences among the machinery settings. Since 
different settings are not known a priori, features that 
distinguish them cannot be known a priori as well. Thus, an 

incremental algorithm for both feature extraction and 
clustering will be applied to the available datasets in order 
to 

1. Extract relevant information (features) based on actual 
raw data 

2. Recognize in which operating condition the machinery 
is operating 

For feature extraction, we adopted the incremental PCA 
provided by (Lippi and Ceccarelli, 2019), since the dataset 
is made of a relatively small number of variable and data 
streams that potentially can grow quickly. 

3.1 Dataset description 

The available datasets were extracted from three sources. 
In the first data source, here named as S1, data were 
recorded once a day on a batch of 30 seconds after 30 
minutes of machine functioning, so to avoid transients. 
Data of the second and the third data source, here named 
as S2 and S3, have been extracted from the machinery PLC 
at different frequencies, 1 Hz and 10 Hz, respectively. As 
summarized in Tab. 1, S1 covers a period of 2 years, while 
S2 and S3 cover just 8 and 9 months. In both cases, data 
are collected in an intermittent way, meaning that not all 
days are included in S1 and not all days and hours are 
included in S2 and S3.  

Tab. 1 Datasets structure 

Machinery Source Period of analysis 

M1 S1 

S2 

S3 

~ 2 years 

8 months 

9 months 

 

Each data source contains a different number of variables. 
In particular, the data source S2 contains 27 variables, 
related to the temperatures and thermo-resistors of the 
component, while S3 contains variables related to the 
electric motors and the production rate. S1, finally, contains 
the variable of both datasets and also the setting values of 
machinery.  

3.2 Methodology and results 

First, a complete supervised and offline analysis is carried 
on, in order to verify that the PCs selected by the PCA are 
actually good features for classification. To this aim, we 
extract the different settings from S1. As shown in Fig. 4, 7 
different settings were implemented in the period. In 
particular, two of them are just implemented for 1 day each. 
Then, the offline PCA is conducted on the variables of S1 
(low frequency data source) to find the PCs that explain the 
most of variance contained in the dataset. As shown in Fig. 
5, the 90% of the variance is provided by only 6 PCs. These 
PCs, were used to feed a linear SVM for classification, and 
it turned out that the accuracy of classification is 98.4%, 
against the value of 98.2% resulted from the application of 
the same classification model, without the prior application 
of PCA. Confusion matrices of SVM, from which accuracy 

Fig. 3 Signals collected from the component under 
analysis 
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has been computed, are shown in Fig 6, with and without 
PCA respectively. The fact that the batch analysis with PCA 
outperforms the classification accuracy of the classification 
without PCA, justifies the effort for the incremental PCA. 
This is also justified by the fact that the PCs extracted 
incrementally are equal to those extracted offline, as shown 
in Fig 7. 

Finally, the incremental PCA was embedded in the 
incremental clustering algorithm, in order to verify the 
goodness of the combination of these algorithms in the 
setting recognition. Results are shown in Fig. 8 and 
performances of the algorithm are summarized in Tab. 2, 
where the time stamp has been replaced by the number of 
the iteration, since data are not continuous in time.  

It resulted that the algorithm is able to recognize a change 
in the operating condition when there are enough points 
for each setting. Indeed, all the setting changes have been 
recognized, except for setting 7 and setting 2, that are 
represented by only one data point each. Note that the 
asterisks mean that since the previous cluster has not been 
recognized, the latency has been computed from the last 
recognized cluster. The high latency in both cases, is 
because when a point is considered anomalous, the 
algorithm does not evaluate the opportunity to generate a 

new cluster. This is only considered when the system comes 
back to the normal condition. For assessing the 
performance, we computed the accuracy as the number of 
correctly predicted points out of the total number of point. 
In this case, the accuracy is equal to the 70%. In addition, 
several false alarms have been generated. However, since 
they did not correspond to the creation of a cluster, they 
can be ignored. 
Note that, the time to process a data point is much more 
lower than a second. Thus, with ‘high latency’, we actually 
mean that the algorithm takes few seconds for recognizing 
a change in the data structure.  
 
Tab. 2 Clustering performance on S1  

 
Since for the analysed component, high frequencies data 
sources S2 and S3 were also available, the same 
methodology was applied to them, in order to verify if a 
more high frequency could have led to a better accuracy. 
Note that, these dataset are not labelled. Thus, to evaluate 
the performance of the algorithm, only days for which the 

Setting change True Predicted Latency 

From 3 to 6 40 - - 

From 6 to 7 43 - - 

From 7 to 6 44 152* 112* 

From 6 to 1 260 264 4 

From 1 to 2 336 - - 

From 2 to 5 337 339* 3* 

From 5 to 4 363 364 1 

Fig. 4 Machinery settings implemented in the 
period of analysis 

Fig. 5 Cumulative variance explained by PCs (batch) 

Fig. 6 Confusion matrices obtained by linear SVM without 
(on the left) and with (on the right) PCA 

Fig. 8 Setting recognition by using incremental PCA and 
clustering 

Fig. 7 Comparison on the cumulative variance 
explained by PCs with batch PCA and on-line 

PCA 
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setting values are known (from S1) are considered. S1 and 
S2 have been extracted between October 2017 and 
September 2018. As shown in Fig. 4, only 3 settings were 
implemented in that period (Setting number 3, 7, and 6).  
However, due to the intermittent collection, no data related 
to the setting 7 were included in S2 and S3. Therefore, only 
settings 3 and 6 were implemented. 
Here, since the two sources were collected at different 
frequencies, many transients were included, and variables 
are split between the two sources, more data pre-processing 
was necessary, in order to join the two datasets and apply 
the proposed incremental procedure. First, to make the 
data sources homogeneous, the frequency of S3 (10 Hz) 
has been reduced to 1 Hz by computing the mean value 
over 10 samples. Then, the datasets were joined and 
transients eliminated by selecting samples for which the 
production rate was different to zero. In addition, during 
the online procedure, features (PCs) are extracted every 30 
min (1800 points), so to feed the clustering algorithm with 
a more smoothed features. Results of PCA and clustering 
are shown in Fig. 9 and Fig. 10, respectively. It worth note 
that, in this case, the 90% of the variance is provided by 10 
PCs. The algorithm is able to classify the observations into 
the 2 clusters with an accuracy of 96.75%. In particular, an 
anomaly is detected after 9 points from the real setting 
change, while the new cluster was created after 39 points.  
As a result, we can conclude that dimensionality reduction 
techniques, as PCA, improve the classification even when 
the number of variables in not huge, in both batch and 
online analysis. When the data sampling frequency is low 
and few data is available for each condition, as in the case 
of settings 2 and 7, the anomaly detection algorithm, as well 
as the incremental clustering algorithm, fails in recognizing 
them. However, this situation rarely happens in real 

industries that continuously collect the data from their 

machinery. Indeed, when data are collected at high 
frequencies, having one only data point per setting would 
mean that that a particular setting has been implemented 
for only 30 minutes (if the features are extracted every 30 
minutes, as in the presented case). This result suggests that, 
even in the case of a slow degradation, if the condition 
recognition is required for adapting degradation modelling 
to different degradation rates, then recording of one 
observation per day (as in the case of data source S1) is not 
a good choice. Rather, a higher sampling frequency is 
necessary, so that more features representing the same 
operating condition can be extracted. In this way, the 
anomaly detection algorithm has enough “time” to 
recognize the change in the machinery behaviour and 
trigger the clustering algorithm. At the same time, a cluster 
corresponding to the same setting is well represented and 
can be distinguished by other clusters more easily. 
However, when data is collected at high frequencies, more 
PCs are needed to explain the variance of the data, which 
turns in a more required memory for the data storage.  

4. Conclusions and future research 

In this paper, an unsupervised and streaming application of 
feature extraction and condition recognition is introduced, 
as fundamental parts for the implementation of predictive 
maintenance. In particular, the problem is tackled by an 
industrial point of view, highlighting which could be the 
goals and issues of an industry that is approaching to a 
prognostic program. Indeed, many industries have to deal 
with the following issues: 

1. Datasets they collect are unstructured, intermittent 
and unlabelled, as in many cases they did not collect 
data for maintenance purposes; 

2. When they analyse the data, they may do not know 
every possible operating conditions of machinery. In 
addition, settings may slightly different among each 
other for machinery installed in different plants. 

These considerations led to resort to unsupervised and 
incremental learning, which can learn automatically and 
incrementally both relevant variables (features) and 
operating conditions (clusters).  
To this aim, an incremental dimensionality reduction 
technique, IPCA, has been adopted for feature extraction, 
while the combination of AAD (for anomaly detection) and 
ADP (for clustering) has been used for the condition 
recognition. The application of these algorithms to a 
streaming dataset collected from an automatic machinery 
provided the following results. First, only few features out 
of 31 signals can be extracted. This represents an advantage 
for both the accuracy of clustering (classification) and the 
storage capacity required by the device eventually installed 
at the edge of the machinery. Second, based on those few 
features, the incremental clustering, starting from scratch, 
is able to correctly recognize different settings, when they 
are represented by a sufficient number of points. This 
represents an advantage for subsequent analysis. Indeed, a 
real-time condition recognition allow to update the 
corresponding degradation model and compute the RUL 
of the component accordingly. Finally, we have also seen 
that even in case of slow degradations, a higher sampling 

Fig. 10 Setting recognition by using incremental PCA and 
clustering (on hight frequencies data sources) 

Fig. 9 Comparison on the cumulative variance 
explained by PCs with batch PCA and on-line PCA 

(on high frequencies data sources) 
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frequency of data collection could lead to better results. In 
particular, in this case, we have demonstrated that with the 
data collection performed every 30 minutes, it is possible 
to achieve an accuracy for clustering of 96.75%. 
In respect with the work presented in (Calabrese et al., 
2019), in which an online computation of the Health 
Indicator (HI) is performed, that refers to only one fault 
mode and was chosen based on an offline analysis, in the 
present work, a different set of features is extracted each 
time a change in the condition occurs (operating conditions 
or health condition). Thus, the improvement of the 
methodology means that, in this version, it is also able to 
recognize different conditions with no training.  
Although this application demonstrates that the proposed 
approach achieves good results, still many efforts has to be 
done in order to: (1) improve the data collection procedure, 
so to make datasets as much structured as possible  and  
fastening the data pre-processing step; (2) reduce the 
latency of the algorithm, so to recognize operating 
conditions represented by few points.  

In addition, adaptive degradation models have also to be 
included into the algorithm for a complete prognostic 
program. The relationships between components of the 
same machinery and the influence that a fault in a 
component has on the other components, should also be 
taken into consideration. Further research will be dedicated 
to these topic.  
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