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Abstract: This paper investigates the impact of several routing strategies on minimization of the travel-time for pickers 
in a manual warehouse. Many solutions have been proposed in literature over the last years, however, just a few authors 
really compare them on equal terms in order to carry out a proper comparison. In this work, three well-known heuristic 
strategies (i.e. S-Shape, Largest Gap, and Combined) are firstly compared to each other and then with two meta-
heuristic algorithms owning to swarm intelligence family (i.e. Ant Colony Optimization and Particle Swarm 
Optimization). Firstly, an empirical study has been made to find out the best setting for meta-heuristics’ parameters. 

Then, a discrete event simulation model has been developed by using both Python© and Cython© programming 
languages, and the analyzed strategies have been compared under several storage assignment policies. 
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1. Introduction 

Warehousing is an aspect of paramount importance in 
supply chain and logistics. It consists in storage for raw 
materials or finished goods, in order to provide a good 
synchronization of industrial processes. Nowadays, it is 
uniformly achieved that a well-designed warehousing policy 
leads to benefits and positive impacts, within the company 
and across the entire supply chain (Zhang and Lai, 2006). 
Thanks to the inventory, the risk of delay in shipments and 
production is considerably reduced, even if the demand is 
subject to big changes (Penteado et al. 2016). Furthermore, 
warehousing offers a wide range of economic benefits and 
increases the value of goods, since the products are 
available at the right place in the right time (Penteado et al. 
2016). Over the last years, thanks to innovative automation 
technologies, new efficient automated solutions spread and 
found application in several industrial fields (Bertolini et al., 
2019). In particular, concerning logistic, more and more 
manual warehouses were replaced by partially and fully 
automated solutions, namely automated storage and 
retrieval systems (AS/RS). The new AS/RSs are able to 
fulfil more shipments per day, and their storage capacity is 
much higher if compared to manual warehouses. They 
represent a great success, and this transition to automation 
is now well-known as “automation logistic”. However, 
even if the fully automated solutions are usually more 
efficient, their implementation is strictly limited to contexts 
in which unit loads are standardized, quantities are big, and 
the variety of retrieved items is small (Janssen et al. 2019). 
For this reason, in contexts of small-items-storage and 
spare-parts-handling, manual warehouses still represent the 
standard solution. In most of distribution centres, where 
operations usually consist in decomposition of pallets, 
short period storage, re-composition and shrink-wrapping 
of new pallets, classic picker-to-parts strategy is still the 

most widespread. Since, the pickers spend the most of their 
working time moving from a warehouse location to 
another, effective picking strategies may reduce the travel 
time and increase the productivity. Each warehouse is 
different, and the picking strategy must be chosen based on 
layout, items, number of resources, and equipment that the 
workers are utilizing. Among the most known picking 
strategies are batch picking, zone picking, and wave 
picking. Many other strategies, such as vision picking and 
voice picking, also found application thanks to innovative 
electronic solutions. However, all these strategies require 
particular conditions or equipment to be efficiently 
implemented. For instance, batch picking and wave picking 
need the possibility to sort the items after retrieving, zone 
picking is efficient in case of very diverse inventory, vision 
picking and voice picking need an headset and a mobile 
computer attachment. For these reasons, classic order 
picking, even though it guarantees less chance of 
improvement, is often the most sensible choice. Since, in 
case of order picking there is no batches composition 
problem, the main aspect to focus on is the routing of 
pickers. The scientific literature has been studying for long 
time the routing strategies to reduce the travel time for 
pickers under order picking conditions, although, each time 
a new approach is proposed, it is often compared on equal 
terms with just one or two more solutions (Hosam et al. 
2015). Moreover, to the authors’ best knowledge, only a 
few publications exhaustively study the impact of different 
layouts on the proposed approach. Because of this, during 
the design phase of a manual warehouse, is hard to 
understand which is the most feasible approach. In this 
paper, the aim of the authors is to partially fill this gap. 
Focusing on order picking, three heuristic routing strategies 
(i.e. S-Shape, Largest Gap, and Combined) are firstly 
compared each other, and then compared to a meta-
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heuristic algorithm owning to swarm intelligence family (i.e. 
Ant Colony Optimization). The choice of the ant colony is 
due to the fact that some publications sponsor it as the 
most effective in these contexts. Finally, the authors take 
the opportunity to present their own solution by 
introducing a re-adapted Particle Swarm Optimization, 
which is lastly compared with previously introduced 
approaches. The Particle Swarm Optimization (PSO) is a 
relatively new metaheuristic, which, up to now, has always 
provided great benefits when applied to different contexts 
such as Neural Networks training (Suresh et al., 2015) and 
Bayesian Networks (Aouay et al., 2013). Its application to 
industry, logistics, and other contexts where a discrete 
version of the algorithm is needed is still premature, 
however, in the era of modern computing, the PSO is 
promisingly more suitable than other metaheuristics for 
both parallelization techniques: multiprocessing and multi-
threading (Malakhov et al., 2018). All the comparisons of 
the analysed algorithms are made using the same layout, 
and observing the behaviour of the analysed approaches 
when the complexity of the problem and the storage 
assignment policy change. The reminder of this paper is 
structured as follows. In section 2 the heuristic strategies 
are briefly described. In section 3 the Ant Colony 
Optimization (ACO) and the proposed version of Particle 
Swarm Optimization (PSO) are described. An empirical 
setting of the parameters of ACO and PSO in described in 
section 4. In section 5, the layout used is introduced and 
the proposed approaches are compared each other. Finally, 
considerations and futures developments are presented in 
section 6. 

 

2. Heuristic approaches 

2.1. S-Shape 

The S-Shape strategy (Marchet, 1994) is also known as 
‘traversal’. It defines a route in which the aisles that are to 
be visited, are totally traversed. Conversely, aisles where 
nothing has to be picked are skipped. The advantage of this 
strategy consists in its simplicity and easy implementation. 
In case of multiple blocks and cross-aisles, after traversing 
an aisle, to decide which aisle to run, only adjacent blocks 
are considered. 

2.2. Largest Gap 

In the Largest Gap (LG) strategy, firstly introduced by Hall 
(1993), every time the picker enters an aisle, the distance 
between the current picking position and the next one is 
estimated, if it is bigger than the distance between the 
current position and the beginning of the aisle, the picker 
go back to the beginning of the aisle, otherwise he/she goes 
to the next picking position. In case of multiple blocks and 
cross-aisles, as for the S-Shape strategy, every time a new 
picking point is to be defined, only adjacent blocks are 
considered. 

2.3. Combined 

The Combined strategy (Roodbergen and De Koster, 2001) 
introduces a sort of try-and-error evaluation to define the 
best route. Every time all picking position in an aisle have 
been visited, the alternatives to go to the rear end of the 
aisle and to return to the front end are compared with each 
other. The solution resulting in the shortest path is chosen. 

As for the strategies described above, in case of multiple 
blocks, only the adjacent ones are considered. 

 

3. Meta-heuristic approaches 

3.1. Ant Colony optimization (ACO) 

The ACO is a meta-heuristic optimization technique 
inspired by ants behaviour. When an ant must choice a 
route instead of the other, he/she looks at the quantity of 
pheromone left by other members of the colony. An higher 
level of pheromone means a better route, usually because 
shorter if compared to the others. This curious behaviour 
inspired the creation of a probabilistic technique of 
operational research for solving computational problems, 
which can be formalised with a graph. The first version was 
proposed by Dorigo et al. (1996), and it was originally called 
Ant System. Then, over the years, several improvements 
and adjustments to different contexts were proposed (Bell 
and McMullen, 2004), and the ACO was rearranged to 
work with discrete problems and is now note to be one of 
the best performing algorithms for routing and Travel Sales 
Problem (TSP). The ACO execution consists of loops. At 
each loop t, a new ant is generated and the algorithm takes 
into account the set of n picking positions (i = 1,…,n) to be 
visited. The edge connecting two picking positions i and j, 
where i ≠ j, can be denoted by tuple (i, j), and its length is 
di,j. Hence, the cost of a solution D may be calculated as 

∑ 𝑑𝑖,𝑖+1
𝑛−1

𝑖=1
.  

Each ant provides a new solution by building it element by 
element. The new solution is then compared to the best 
solution found so far and, if its cost is lower than the best 
solution’s cost, it is made the new best solution. Every time 
a new best solution is found, the pheromone on each edge 
is updated. Given τi,j the pheromone on edge (i, j), it is 

updated according to eq.(1), where ρ and Q are parameters 
of the algorithm. 

𝜏𝑖,𝑗 = {
𝜌𝜏𝑖,𝑗 +

𝑄

𝑑𝑖,𝑗
, 𝑖𝑓 (𝑖, 𝑗) ∈ 𝑏𝑒𝑠𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

𝜌𝜏𝑖,𝑗,             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (1) 

While the ant is building a new solution, given i the last 
element of the current incomplete solution and I the set of 
picking positions not visited yet, the next position is 
selected by using a roulette wheel (Shtovba, 2005), where 
the probability to move to picking position j, namely pi, j, is 
calculated as in eq.(2). 
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 (2) 

3.2. Particle Swarm Optimization (PSO) 

The PSO is a meta-heuristic optimization technique 
inspired by bird flocks behaviour. Each bird is represented 
by an element called particle, and, at every iteration of the 
algorithm, he/she explores a new solution in its 
neighbourhood according to his/her own decisions and 
other particles decisions. The first contribution to PSO is 
attributed to Kennedy and Eberhart (1995), and it was 
firstly intended as a simulation of social behaviours and not 



XXV Summer School “Francesco Turco” – Industrial Systems Engineering  

as an optimization technique. Contrary to ACO, there are 
not many scientific contributions proposing a discrete 
version of PSO, and most of them propose a binary 
formalization. In the original version, given t the current 
iteration, each particle has a current position or current 
solution called current(t), and a personal best called pbest(t), 
which represents the best solution explored by the particle. 
Moreover, each particle knows the global best found so far, 
which is usually called gbest(t) and represents the best 
solution explored by the whole swarm. The solution 
explored by each particle in iteration t is defined by its 
current position current(t) and its current speed v(t), where 
v(t+1) may be calculated as in eq.(3). 

𝑣(𝑡 + 1) = 𝑣(𝑡) ∙ 𝑤 + 𝑟𝑛𝑑
∙ 𝐶1(𝑝𝑏𝑒𝑠𝑡(𝑡) − 𝑐𝑢𝑟𝑟𝑒𝑛𝑡(𝑡))
+ 𝑟𝑛𝑑 ∙ 𝐶2(𝑔𝑏𝑒𝑠𝑡(𝑡)
− 𝑐𝑢𝑟𝑟𝑒𝑛𝑡(𝑡)) 

(3) 

Where w, C1 and C2 are parameters of the algorithm, and 
rnd is a random number in range [0,1]. Clearly, this 
behaviour is not possible in a discrete context, because of 
this, the first discrete PSO algorithms proposed (Shi et al. 
2007), are even more popular than the original one. In these 
publications, the authors introduced new ways to calculate 
the speed as a difference between arrays, or they simply 
implemented different neighbour search approaches. In the 
proposed version, the neighbour search is partially 
readjusted. Each particle has (i) a current solution current(t), 
(ii) an intention pintention(t) constituted by a random 
solution, (iii) the greedy solution pgreedy, (iv) the personal 
best solution pbest(t). Moreover it knows the global best 
solution found so far gbest(t). To each of the solutions that 
the particle knows, except for the current solution, a weight 
is assigned (i.e. w1 for the pintention(t), w2 for the pgreedy, w3 
for the pbest(t), and w4 for the gbest(t)). During each iteration, 
each particle explores a new solution, then all particles 
share with others their pbest(t). If a pbest(t) is better than the 
gbest(t), it is made the new global best. In order to better 
understand the proposed neighbour search, the authors 
would like to induce the following notation. Given i a 
specific picking position and t the current iteration, the 
authors define: 

-(i, j1)t the edge which connect i to the next picking position 
in the pintention(t) in iteration t; 

-(i, j2) the edge which connect i to the next picking position 
in the pgreedy; 

-(i, j3)t the edge which connect i to the next picking position 
in the pbest(t) in iteration t; 

-(i, j4)t the edge which connect i to the next picking position 
in the gbest(t) in iteration t. 

Subsequently, are defined d1(t) the length of (i, j1)t, d2 the 
length of (i, j2), d3(t) the length of (i, j3)t, and d4(t) the length 
of (i, j4)t. 

Hence, in each iteration t, each particle explores a new 
solution by changing its current solution current(t). The new 
solution current(t+1) is built position after position, 
beginning from i=1 and going on until its completion. In 
particular, the next picking position is selected between j1, 
j2, j3, and j4. The selection is made by using a roulette wheel, 
where the probability to choice the next picking position 
depends on its distance from i, namely d1(t), d2, d3(t), and 

d4(t): bigger is the distance, lower is the probability. More in 

detail, given t the current iteration and m∈(1,2,3,4), the 
probability pm to choice jm as next node is calculated as in 
eq.(4). 

𝑝𝑚 = {

𝑘𝑚𝑤𝑚𝑒
𝑇 𝑑𝑚⁄

∑ 𝑤𝑠𝑒
𝑇 𝑑𝑠⁄4

𝑠=1

, 𝑖𝑓 𝑑𝑚 > 0

𝑘𝑚, 𝑖𝑓  𝑑𝑚 = 0

 (4) 

where 𝑇 = ∑ 𝑑𝑠
4
𝑠=1  and km is a binary parameter which 

defines the possibility to choose jm as next picking position. 
Thus, given I the set if picking position not included in the 
new current solution yet, km = 1 if (i, jm)t exists (i.e. i is not 

the last picking position of the solution observed), and jm ∈ 
I. If after calculating the probabilities it comes that the 
roulette wheel is not possible because p1=p2=p3=p4=0, the 
next picking position is randomly selected from the set I. 
After defining the new current solution current(t+1), 
according to Zhong, Zhang and Chen (2007) a mutation is 
carried out with low probability. The mutation is made by 
using the well-known 2-opt algorithm. 

 

4. Setting of parameters 

Concerning the ACO, since a design of experiments was 
already carried out in a recent publication concerning a 
similar problem (De Santis et al., 2018), the set of 
parameters defined in that publication is used. Conversely, 
concerning the PSO, an empirical design was carried out to 
find out the best combination. The algorithm was tested on 
40 randomly generated picking lists made of 20 picking 
locations. The algorithm was iterated 10 times per each 
picking list, and the combination of parameters which was 
providing the best average result on most of the picking 
lists was selected. The layout considered is the same 
adopted in the case study. The final optimal set of 
parameters is the following: number of particles = 40, w1 = 
w3 = w4 = 1, w2 = 0.1, mutation probability = 0.1. 

 

5. Case study 

5.1. The assumptions 

The comparisons were made doing following assumptions: 
(i) no capacity limit for pickers is considered; (ii) every 
picking list is associated to one and only one order; (iii) the 
improvement strategies are executed singularly on each 
picking list; (iv) possible physical obstructions between 
pickers are not considered; (v) activities to refill the storage 
locations are not considered; (vi) when a picker has visited 
all the locations associated to a picking list, before taking 
care of the next one, he/she must go back to the I/O point, 
thus, given (i = 1,…,n) the set of picking positions to visit, 
it is always true that 1 = n = I/O. 

5.2. The layout 

In the selection of the layout, a real industrial case was 
observed. The considered warehouse is made of 2 blocks 
divided by a cross-aisle. In each block there are 7 aisles, with 
11 storage locations on each side and 2 aisles at the two 
opposite ends with 11 storage locations only on one side. 
Given u the distance unit, each storage location is 2u deep 
and 2u large, aisles are 4u large, and cross aisle is 4u large as 
well. The Input/Output (I/O) point is in bottom left 
corner. A representation of the warehouse is provided in 
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Fig. 1. To translate the warehouse layout into a distance 
matrix reporting the minimum path between locations, the 
well-known Floyd-Warshall (FW) algorithm was used. FW 
algorithm is an exhaustive procedure, which compares each 
possible path between two given locations (or nodes), in 
order to find the minimum. Of course, before running FW, 
additional nodes were appended where the aisles cross each 
other, otherwise FW would have not worked (Pansart et al. 
2018). 

Figure 1: layout considered in the case study above. 

5.3. The comparison 

The 5 investigated procedures were compared for 3 
different complexities of the problem (i.e. picking list of 10 
items, picking list of 20 items and picking list of 30 items) 
and 2 different location assignment policies (i.e. random 
and class-based). In Tab. 1 and Tab. 2 the comparison of 
the 5 procedures is carried out respectively in case of 
random and class-based location assignment policy. 

The length of the picking list is of 10 items. For each case, 
10 picking lists were used, and the length of the route 
provided by each algorithm for each list is reported in the 
tables. Concerning the metaheuristics, both were tested 10 
times on each picking list, and in the table the average result 
and the standard deviation are reported. Observing the 
results is clear that both metaheuristics always 
outperformed the other procedures, and both are 
characterized by great accuracy, since the standard 
deviation is null. By observing the S-Shape, Largest Gap 
and Combined policies, some interesting considerations 
can be made. As it is clearly visible in Fig. 1, in case of 
random location assignment, the combined method 
outperforms the others in most tests. Conversely, in case 
of class-based location assignment, as represented in Fig. 2, 
the results lead to a different consideration. Since a class-
based assignment policy leads by itself to a shorter route, 
the difference between the analysed routing policies is less 
evident. However, in a relevant number of tests the largest 
gap policy outperformed the combined one, and, even the 
s-shape is providing results closer to those that the 
combined is able to guarantee. Because of this, and due to 
relatively easier implementation of the s-shape and largest 
gap policies, they may be considered more convenient than 
the combined policy. 

 

Table 1: Results for picking list of 10 items and random location assignment policy 

Picking list 
ACO PSO 

S-Shape LG Combined 
Avg. Dev.St Avg. Dev.St 

1 236 0 236 0 324 304 272 
2 160 0 160 0 270 198 208 
3 220 0 216 0 324 296 264 
4 200 0 200 0 368 346 232 
5 196 0 196 0 256 280 222 
6 192 0 192 0 358 236 234 
7 212 0 212 0 348 274 248 
8 196 0 196 0 276 276 230 
9 200 0 200 0 324 304 210 
10 172 0 172 0 256 240 210 

 

Table 2: Results for picking list of 10 items and class-based location assignment policy 

Picking list 
ACO PSO 

S-Shape LG Combined 
Avg. Dev.St Avg. Dev.St 

1 104 0 104 0 114 112 112 
2 152 0 152 0 240 178 196 
3 160 0 160 0 180 212 174 
4 168 0 168 0 258 222 228 
5 144 0 144 0 246 170 285 
6 180 0 180 0 248 210 208 
7 200 0 200 0 324 230 318 
8 164 0 164 0 256 218 180 
9 200 0 200 0 256 240 212 
10 180 0 180 0 264 220 208 
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Figure 2: Comparison of heuristics under random 
assignment. 

 

Figure 3: Comparison of heuristics under class-based 
assignment. 

In view of provided results, metaheuristic approaches are 
still the most efficient and effective. Both outperformed the 
other routing strategies in 100% of tests carried out, and 
both had an approximate accuracy of 99% returning the 
same solution in all the 10 executions made per each 
picking list. For the purpose of this paper it is not relevant, 
although, given the results and the accuracy, it could be 
possible to check if the metaheuristics are finding the best 
solution. In order to provide a further analysis, the heuristic 
procedures are therefore abandoned, and the 
metaheuristics are compared for increasing complexity of 
the problem. At first, the length of the picking list was 
increased to 20 elements, and the results are reported in 
Tab. 3 and Tab. 4. Lastly, the length of the picking list was 
increased again till 30 items, and the results for random and 
class-based assignment policies are respectively reported in 
Tab. 5 and Tab. 6. For reasons of spaces and formatting all 
the mentioned tables are reported in Appendix A. For each 
case described by a specific length of the picking lists and a 
specific location assignment policy, both algorithms were 
tested on 20 different picking lists. For each picking list, 
both algorithms were executed 10 times, hence, in tables 
are reported the average length of the best route found (i.e. 
Avg.), the standard deviation (i.e. Dev.St.), and the well-
known coefficient of variation defined as the standard 
deviation divided by the average. Finally, the numerical 
comparison is computed in the last 2 columns of each table. 
The aim of the author is to compare two main 
characteristics: the validity of the route provided and the 
accuracy of the algorithm. Concerning the accuracy, the 

authors are aware that a bigger accuracy is not a good 
indicator of the validity of a metaheuristic, since the 
computational time should be analysed as well. For 
instance, if an algorithm had a great accuracy and, under 
equal conditions, it provided every time the same solution; 
if its computational time is too long, a less accurate but 
faster algorithm would be preferable. In the same time the 
first algorithm is executed once, the second one might be 
iterated more times, exploring different local optimums to 
choose the best in the end. However, since the compared 
algorithms are very similar in terms of computational time, 
only the accuracy is observed. Moreover, both ACO and 
PSO, are slower if compared to other metaheuristics, thus, 
a big accuracy can be considered a symptom of quality. 

It is also important to point out that, unlike the ACO, the 
PSO is very feasible for parallel computing, which is a big 
advantage in year 2020. Although the authors are not going 
into it in this paper. 

Thus, given the objective to compare validity and accuracy 
of ACO and the proposed PSO, in the last two columns in 
Tab. 3, 4, 5, and 6, are computed the difference in 
percentage between the average result and the variance 
coefficient for each picking list. Given AvgACO the average 
result of the ACO and AvgPSO the average result of the PSO, 
the percentage difference ΔAvg. is computed as in eq.(5). 

∆Avg =
𝐴𝑣𝑔𝑃𝑆𝑂 − 𝐴𝑣𝑔𝐴𝐶𝑂

max (𝐴𝑣𝑔𝐴𝐶𝑂 , 𝐴𝑣𝑔𝑃𝑆𝑂)
 (5) 

Hence, in the last two columns in Tab. 3, 4, 5, and 6, a 
negative value means the PSO provided better results than 
the ACO, otherwise, the ACO worked better than the PSO. 

Analysing the results, no relevant influence of the location 
assignment policies was detected. Of course, in case of 
class-based assignment policy the travelled distance is 
usually shorter, but that is because of the allocation logic, 
and not because of the routing algorithms. The difference 
between the two algorithms is minimal. On average the 
ACO is returning a solution 0.47% better than the PSO in 
case of picking lists made of 20 items, and 1.59% better in 
case of picking lists made of 30 items. Thus, even if the 
difference is minimal, it is possible to highlight a 
deterioration of the PSO, when the length of the picking 
list increases. The same trend may be detected looking at 
the accuracy, and its intuitively represented in Fig. 4. As the 
length of the picking list increases (i.e. the space of feasible 
solutions increases), by looking at the variation coefficient, 
it is possible to see how the accuracy of the PSO decrease 
faster than in case of the ACO. 

 

Figure 4: Effect of the length of the picking list on 
the accuracy of the metaheuristics
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To conclude, the authors point out that, in general, a longer 
picking list increases the number of feasible solutions, but 
not necessary entails a greater complexity of the problem. 
To define the complexity of the problem, the number of 
aisles and the arrival frequency of orders have to be 
considered, too. However, in the proposed case study, the 
layout used is always the same, each order is singularly 
considered, and the picking lists are randomly generated, 
but always controlling at the same time that the locations 
required were not to closed and not all the aisles have to be 
visited. These assumptions avoid into falling into 
borderline cases, where the length of the picking list would 
not have any impact on the complexity of the problem. 

 

6.Conclusions 

This paper investigates the impact of several routing 
strategies on minimization of the travel-time for pickers in 
a manual warehouse. Three classic well-known strategies 
such as S-Shape, Largest Gap and Combined were analysed 
and compared with two meta-heuristics owning to swarm 
intelligence family. The first meta-heuristic was an Ant 
Colony Optimization (ACO), and, due to existence of 
several versions, a recent version proposed in 2018, which 
claims to outperform the previous ones was selected. 
Finally, a new readjusted version of the Particle Swarm 
Optimization (PSO) was proposed. Referring to tests 
carried out, the PSO was very closed to the ACO and 
outperformed other procedures. The authors are very close 
to provide a PSO which, outperforms the ACO as well. In 
order to guarantee a correct comparison, all the proposed 
routing strategies were validated on by adopting the same 
layout, the same picking orders, and the same storage 
assignment policies. To whom it may concern the opinion 
of the authors, future extensions are possible in three main 
directions. (i) Further constraints might be introduced (e.g. 
pickers’ basket’s capacity, orders due date, etc.), (ii) 
different layout might be introduced to observe their effect 
on proposed strategies, (iii) under the same conditions 
described in this paper, many other algorithms can be 
compared. 
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Appendix A. 

Table 3. Results for picking list of 20 items and random location assignment policy 

Picking list 
ACO PSO 

Δ Avg. Δ Coeff. Var. Picking list 
ACO PSO 

Δ Avg. Δ Coeff. Var. 
Avg. Dev.St Coeff. Var Avg. Dev.St Coeff. Var Avg. Dev.St Coeff. Var Avg. Dev.St Coeff. Var 

1 286 4 1,25% 284 0 0,00% -0,56% -1,25% 11 380 0 0,00% 382 4 0,94% 0,42% 0,94% 
2 295 4 1,48% 295 4 1,48% 0,00% 0,00% 12 300 0 0,00% 300 0 0,00% 0,00% 0,00% 
3 248 0 0,00% 248 0 0,00% 0,00% 0,00% 13 308 0 0,00% 311 4 1,41% 1,03% 1,41% 
4 282 4 1,27% 285 3 1,18% 1,12% -0,10% 14 286 4 1,25% 286 4 1,25% 0,00% 0,00% 
5 310 5 1,73% 317 9 2,74% 2,02% 1,01% 15 248 0 0,00% 256 6 2,21% 3,13% 2,21% 
6 260 0 0,00% 262 4 1,37% 0,61% 1,37% 16 264 0 0,00% 264 0 0,00% 0,00% 0,00% 
7 338 2 0,65% 333 2 0,54% -1,42% -0,11% 17 260 0 0,00% 263 4 1,66% 1,22% 1,66% 
8 296 0 0,00% 298 2 0,74% 0,54% 0,74% 18 260 0 0,00% 260 0 0,00% 0,00% 0,00% 
9 212 0 0,00% 212 0 0,00% 0,00% 0,00% 19 306 2 0,72% 304 0 0,00% -0,78% -0,72% 
10 290 2 0,75% 290 2 0,75% 0,00% 0,00% 20 268 0 0,00% 271 5 1,92% 1,18% 1,92% 

Table 4: Results for picking list of 20 items and class-based location assignment policy 

Picking list 
ACO PSO 

Δ Avg. Δ Coeff. Var. Picking list 
ACO PSO 

Δ Avg. Δ Coeff. Var. 
Avg. Dev.St Coeff. Var Avg. Dev.St Coeff. Var Avg. Dev.St Coeff. Var Avg. Dev.St Coeff. Var 

21 252 0 0,00% 252 0 0,00% 0,00% 0,00% 31 260 0 0,00% 260 0 0,00% 0,00% 0,00% 

22 244 0 0,00% 244 0 0,00% 0,00% 0,00% 32 316 0 0,00% 316 0 0,00% 0,00% 0,00% 

23 312 0 0,00% 315 5 1,65% 1,02% 1,65% 33 236 0 0,00% 237 2 0,76% 0,34% 0,76% 

24 304 0 0,00% 306 2 0,72% 0,52% 0,72% 34 276 0 0,00% 276 0 0,00% 0,00% 0,00% 

25 304 0 0,00% 308 7 2,25% 1,30% 2,25% 35 300 0 0,00% 307 7 2,14% 2,34% 2,14% 

26 288 0 0,00% 283 4 1,55% -1,67% 1,55% 36 320 0 0,00% 320 0 0,00% 0,00% 0,00% 

27 287 2 0,62% 287 2 0,62% 0,00% 0,00% 37 288 0 0,00% 289 2 0,62% 0,28% 0,62% 

28 303 2 0,59% 308 3 0,92% 1,56% 0,33% 38 305 2 0,59% 305 2 0,59% 0,00% 0,00% 

29 279 2 0,64% 284 7 2,63% 1,69% 1,99% 39 289 3 1,16% 290 4 1,23% 0,55% 0,07% 

30 248 0 0,00% 250 4 1,43% 0,64% 1,43% 40 308 0 0,00% 313 7 2,10% 1,53% 2,10% 

Table 5: Results for picking list of 30 items and random location assignment policy 

Picking list 
ACO PSO 

Δ Avg. Δ Coeff. Var. Picking list 
ACO PSO 

Δ Avg. Δ Coeff. Var. 
Avg. Dev.St Coeff. Var Avg. Dev.St Coeff. Var Avg. Dev.St Coeff. Var Avg. Dev.St Coeff. Var 

1 383 6 1,55% 386 2 0,57% 0,83% -0,98% 11 322 4 1,11% 328 7 2,28% 1,71% 1,17% 

2 342 4 1,04% 346 4 1,03% 1,15% -0,01% 12 393 2 0,46% 393 5 1,33% 0,00% 0,87% 

3 321 2 0,56% 329 7 2,00% 2,43% 1,44% 13 308 0 0,00% 308 0 0,00% 0,00% 0,00% 

4 377 3 0,89% 380 6 1,49% 0,84% 0,60% 14 398 5 1,35% 407 8 1,89% 2,16% 0,54% 

5 315 2 0,57% 315 5 1,65% 0,00% 1,09% 15 310 7 2,16% 313 9 2,92% 0,77% 0,76% 

6 316 0 0,00% 329 16 4,74% 3,89% 4,74% 16 344 6 1,64% 345 11 3,11% 0,23% 1,47% 

7 358 4 1,00% 362 7 2,01% 0,88% 1,01% 17 356 0 0,00% 369 9 2,47% 3,47% 2,47% 

8 349 2 0,51% 354 6 1,71% 1,58% 1,20% 18 332 0 0,00% 341 4 1,29% 2,58% 1,29% 

9 348 0 0,00% 357 6 1,66% 2,47% 1,66% 19 360 0 0,00% 368 6 1,72% 2,17% 1,72% 

10 349 5 1,50% 354 7 2,05% 1,58% 0,56% 20 390 7 1,71% 390 9 2,36% -0,20% 0,65% 

Table 6: Results for picking list of 30 items and class-based location assignment policy 

Picking list 
ACO PSO 

Δ Avg. Δ Coeff. Var. Picking list 
ACO PSO 

Δ Avg. Δ Coeff. Var. 
Avg. Dev.St Coeff. Var Avg. Dev.St Coeff. Var Avg. Dev.St Coeff. Var Avg. Dev.St Coeff. Var 

21 180 0 0,00% 187 7 3,51% 3,85% 3,51% 31 258 5 1,77% 258 6 2,35% 0,00% 0,58% 
22 289 2 0,62% 301 7 2,19% 3,99% 1,57% 32 300 0 0,00% 306 10 3,14% 2,09% 3,14% 
23 326 2 0,67% 329 11 3,38% 0,97% 2,70% 33 288 0 0,00% 298 2 0,73% 3,49% 0,73% 
24 277 2 0,65% 279 2 0,64% 0,86% -0,01% 34 288 0 0,00% 296 8 2,87% 2,70% 2,87% 
25 300 5 1,63% 300 6 1,89% 0,00% 0,25% 35 238 2 0,92% 242 2 0,91% 1,66% -0,02% 
26 317 2 0,56% 315 2 0,57% -0,51% 0,00% 36 281 2 0,64% 288 10 3,40% 2,50% 2,77% 
27 293 2 0,61% 302 12 3,82% 2,92% 3,21% 37 323 7 2,03% 327 17 5,29% 1,22% 3,25% 
28 252 0 0,00% 258 5 2,08% 2,48% 2,08% 38 312 3 0,91% 314 13 4,08% 0,76% 3,18% 
29 252 6 2,24% 252 9 3,55% 0,00% 1,30% 39 261 2 0,69% 264 4 1,52% 1,21% 0,83% 
30 308 0 0,00% 322 13 4,09% 4,23% 4,09% 40 264 0 0,00% 266 4 1,35% 0,60% 1,35% 

 


