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Abstract: The significant and constant spike in e-commerce purchases experienced in recent years has generated more 
pressure on Logistics Service Providers’ urban activities, with negative consequences on costs and negative externalities 
(i.e. environmental impacts and traffic congestion). In this context, home deliveries are some of the major sources of 
inefficiencies in last-mile delivery systems, due to several reasons such as high order frequency, disperse demand, and non-
negligible probability of missed delivery. Consolidating final users’ demand in Automated Parcel Lockers (APL) represents 
an effective solution to the operational strains entrenched in last-mile deliveries. However, this solution requires significant 
investment by private operators and compels space organizers such as public authorities to grant the usage of portions of 
public space wherein APLs are installed. An accurate ex-ante appraisal of the variables involved is thus needed in order to 
discern the overall impact of APL on the urban setting. Hence, this study proposes a solution to the Parcel Lockers network 
design problem. In particular, the aim of the approach is to minimize the lost demand percentage and the number of APLs 
installed. The dimensions of the APLs are also assessed by the proposed algorithm in a second step. Input variables and 
parameters of the model are identified through an online survey submitted to final users located in the city of Turin, Italy. 
Case-scenarios are simulated via 1000 random demand points according to the real population distribution, potentially 
covered by 33 APL locations located inside the 90sqkm urban area. The purpose of this work is to draw implications for 
last-mile private actors, urban space planners and policy makers. 
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1. Introduction 

Driven by e-commerce last-mile logistics has increased at 
constant rate in recent years, showing projected 
compounded annual growth rates of 15% from 2017 to 
20231. Thus, Logistics Service Providers have to increase 
their productivity rates in order to fulfill the increasing 
request for home deliveries, which are characterized by 
high frequency of orders, disperse demand and non-
negligible probability of a missed delivery (Cagliano et al., 
2017). Each home delivery is also time consuming, since 
drivers need to decelerate, look for parking, unload the 
parcel and wait for the receiver (Akeb, Moncef and Durand, 
2018). Therefore, last-mile home deliveries generate a 
significant number of vehicle-kilometers for each delivery 
route, with negative consequences on either the 
profitability of private operators and the emissions of 
pollutant (e.g. CO2, NOx, PM10) (Schliwa et al., 2015). 
Consolidating final users’ demand in Automated Parcel 
Lockers (APL) represents an effective solution to the 
operational strains entrenched in last-mile deliveries, by 
virtue of reducing the points of delivery and consequently 
the average delivery time (Bailey et al., 2013). Parcel lockers 
are a type of unattended collection-and-delivery point 
(CDP) installed in public and private areas, where parcels 

                                                        
1 https://www.emarketer.com/content/global-
ecommerce-2019\ 

are retained for a limited amount of time until the customer 
is able to retrieve them by using the order reference code 
(Iwan, Kijewska and Lemke, 2016). However, this solution 
requires significant investment by private operators and 
compels space organizers such as public authorities to grant 
the usage of portions of public space wherein APLs are 
installed (Zenezini et al., 2018). Moreover, the diffusion of 
parcel lockers depends on the potential customers’ 
perception and inclination towards the adoption of 
technological innovations that impose a change of 
customers behavior. Vakulenko, Hellström and Hjort 
(2018) found that co-value in last-mile logistics is generated 
between parcel lockers operators and customers, but that 
this process of value co-generation can also lead to 
reduction of value when delivery issues occur. Besides the 
ease of use of this new technology, that might crowd-out 
less tech-savvy customers, one major variable driving the 
adoption of parcel lockers is location. Traditionally, parcel 
lockers are installed in easily accessible places, controlled 
and close to places with a high frequency of shipments 
(service stations, shopping malls, squares) (Janjevic, 
Kaminsky and Ndiaye, 2013). Using this type of facilities 
lowers the entry barriers because they provide a solution to 
safety issues often encountered in customers surveys 
(Lachapelle et al., 2018) and help maximizing the catchment 
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area of parcel lockers. Moreover, these facilities are mostly 
reached by car by customers on the route to/from their 
homes, and thus the nuisance of picking up parcels is 
reduced. Given the undeniable operational benefits of such 
delivery option and factoring in the estimated continuous 
increase in online purchases, we might expect more 
widespread adoption of APLs in cities worldwide. 
Preferred locations nowadays might not be enough to 
cover all the future demand. Furthermore, understanding 
the implications on quantifying the number of APL 
locations of customers’ willingness to retrieve the parcels 
by themselves.  An accurate ex-ante appraisal of the 
variables involved is thus needed to discern the overall 
impact of APL on the urban territory. Moreover, existing 
papers do not provide a comprehensive methodological 
framework able to guide practitioners through the different 
steps of the problem, from data collection to visualizing the 
APL stations on the territory. To this end, this study 
proposes a version of the location set covering problem to 
the Parcel Lockers network design problem, which 
considers not only the distances that customers are 
potentially willing to cover in order to retrieve the parcel 
but also the demand lost as a consequence of not reaching 
the customer through an APL location. The purpose of this 
work is to draw implications for last-mile private actors and 
space planners. 

The paper is structured as follows. First, a review of 
pertinent literature is proposed. Then, in Section 3 the 
research methodology is outlined in detail, with the results 
of a numerical experiment presented in Section 4. Finally, 
discussions and conclusions are drawn in Section 5.  

2. Literature Review 

The APL location problem represents a niche yet emerging 
stream of research within the domain of last-mile logistics.  

Lachapelle et al. (2018) provide a comprehensive 
assessment of existing APL locations in terms of 
customers’ preferred attributes such as safety, proximity to 
highways and accessibility of the location. Thus, the 
authors draw implications for future locations based on 
existing ones, which might be the result of faulty evaluation 
in the first place, rather than through an optimization 
algorithm. Mathematical formulations aimed at optimizing 
the number and location of facilities within a network of 
nodes fall under the generic term of Facility Location 
problems. Most of such problems are p-median problems, 
location set covering problems and location-allocation 
problems.  

In p-median problems, the objective function minimize the 
total demand-weighted distance between customers and 
facilities. Kedia, Kusumastuti and Nicholson (2019) adopt 
a consumer-centric approach to Collection-and-delivery 
points location, submitting a survey to users in order to 
retrieve the demand parameters and maximum distance 
covered by consumers willing to pick up the parcel at a 
CDP location. Deutsch and Golany (2018) propose an un-
capacitated facility location problem. In their model, 
demand is lost if customers are not reached by at least one 
APL and their willingness to move decreases with the 
distance to the parcel locker. Location set covering 

problems minimize the cost of installing P facilities needed 
to cover a specified level of demand.  (Lee et al., 2019) adopt 
a two-step approach to the APL location problem. First, 
they identify the set of potential locations according to the 
afore-mentioned requirements. Second, they use a set-
covering model to estimate which ones of the potential 
locations should receive an APL. However, the decision 
criteria used to select the potential locations are unclear and 
the numerical case study comprises a relatively small 
neighbourhood. Moreover, set covering problems generally 
risk generating too large numbers of facilities because 
nodes need to be covered regardless of their individual 
demand. 

Previous works show that APL location problem can be 
tackled with a long-term planning horizon. More recent 
studies look at the impact of APL locations on a short-term 
planning horizon, integrating the use of such delivery 
solution into the Vehicle-Routing Problem (VRP), 
therefore adopting a location-allocation approach. 
Orenstein, Raviv and Sadan (2019) for instance optimize 
the assignment of parcels to both the vehicles and APL 
modules, but assumes equal attractiveness of different APL 
locations for the customers, thus not considering any 
customers’ preference in the optimization algorithm. 
Enthoven et al. (2020) instead aim to minimize costs for 
both customers and LSPs and include penalties if 
customers are not reached via their preferred delivery 
method.  

Hence, the main objective of an APL location problem is 
to find the location that minimizes the number of APLs to 
install and operational costs considering final customers in 
the decision. These models consider a fixed distance 
allowed between the APL and the customer points. Final 
customers’ however do not all share the same level of 
appreciation and commitment for this last-mile solution, 
and thus a location model should consider a certain amount 
of variability in customers’ willingness to move from their 
place of residence to pick up the parcel as well as a 
variability in the demand of parcels. Because of their 
preferences and the multiple delivery options that 
customers can now choose from, failing to cover a 
customer from an APL location will almost certainly result 
in lost demand. Finally, our model does not seek to 
optimize vehicle routing but rather to identify a set of 
locations to cover the potential demand by customers. 
Hence, we propose a location set covering problem which 
aims at overcoming the issue of choosing too many 
facilities by weighting each node (i.e. customer) with its 
demand.  

3. Methodology 

3.1 Model 

Since we have used MS Excel software both to setup the 
problem and run the optimizations, the model constraints 
are described both using logical statements to reflect the 
formulas entered in the spreadsheet cells, and mathematical 
terms. 

The problem we are facing can be considered as a subgenre 
of the Facility Location Problems, its aim is to limit the 
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impact of the facilities to install inside the city urban system 
while satisfying a prefixed amount of estimated demand. 
The parameters included in the model are generated 
according to the statistics obtained by the Survey we made. 

The main assumption undertaken during the problem 
modelling is that the APLs have been considered to have 
got unlimited volumetric capacity, implying they can satisfy 
any amount of demand by simply being located at a 
distance inferior to the satisfied users’ tolerances.  

minimize	'𝑎𝑐𝑡𝑖𝑣𝑒.

/

.01

 (1) 

𝑑𝑒𝑚_𝑙𝑜𝑠𝑡_𝑝𝑐𝑡 ≤ dem_lost_pct_max (2) 
𝑑𝑒𝑚_𝑙𝑜𝑠𝑡_𝑝𝑐𝑡 = 𝑑𝑒𝑚_𝑙𝑜𝑠𝑡/dem_tot (3) 

dem_tot ='demE

F

E01

 (4) 

𝑑𝑒𝑚_𝑙𝑜𝑠𝑡 ='(1 − 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑E) ∙ demE

F

E01

 (5) 

IF	tolE ≥ 𝑚𝑖𝑛Q𝑑E.R	THEN	𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑E = 1 (6) 
IF	𝑎𝑐𝑡𝑖𝑣𝑒. = 1	THEN	𝑑E.

= WQxE − 𝑥.R
Y
+ QyE − 𝑦.R

Y
	ELSE	𝑑E. = 𝑀 

(7) 

min(lower_xE) ≤ 𝑥. ≤ max(upper_xE) (8) 
min(lower_yE) ≤ 𝑦. ≤ max(upper_yE) (9) 

𝑎𝑐𝑡𝑖𝑣𝑒. ∈ {0,1} (10) 
𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑E ∈ {0,1} (11) 

dem_lost_pct_max ∈ ℝi (12) 
xE, yE, 𝑥., 𝑦. ∈ ℤ (13) 
𝐼 = {1. .1000} (14) 
𝐽 = {1. .33} (15) 

 

The objective function (1) is to minimize the number of 
APLs to locate, variable (10) being Boolean describes the 
activation or not of the single APL and the maximum value 
the objective function can reach is given by parameter (15). 

The main constraint (2) the model is subject to is that the 
total unsatisfied demand percentage must not exceed a 
prefixed amount given by parameter (12). The total 
unsatisfied demand percentage (3) is given by the ratio 
between the total unsatisfied demand and the total 
estimated demand. The total estimated demand (4) is 
obtained by summing all the individual users’ demands. The 
total unsatisfied demand (5) is obtained by summing the 
individual users’ demand multiplied by their satisfaction 
factor (11). 

Statements (6) and (11) define the Boolean variable and 
force its value to 1 whenever the user’s tolerated distance 
to travel is equal or exceeds the air distance between the 
coordinates the user is set in and the nearest APL facility, 
otherwise 0. Variable (11) being Boolean implies we are 
assuming a user’s demand can be either completely satisfied 
or not. Both the users’ randomized locations, as problem 
parameters, and the possible APLs locations, as problem 
variables, are identified using the two-dimensional 
Cartesian x,y coordinate system. The air distance between 

the user and the APLs is given by statement (7) that can be 
interpreted as follows: whenever variable (10) equals 0 the 
APL is not activated and all the distances between that very 
APL and all the users is set to big M so none of them, 
together with constraint (6), will be considered to be 
satisfied.  

3.2 Parameters 

Before being considered as static values, the model 
parameters have been established beforehand. 

The maximum number of possible APLs to locate (15) has 
been capped to the number of different postcodes the 
urban city of Turin has got. This choice is coherent to the 
fact postcodes are used by the national postal service of 
Italy to encode the addresses of correspondence, also it 
allows the facilitation of the sorting mails work and copes 
with the huge growth of postal traffic. 

The number of users to generate (14) has been capped to 
represent just the 0.1% circa of the actual urban population. 
Since both the problem setup and optimization have been 
carried out using Microsoft Excel software, instead of 
setting the users sample dimension to the actual population 
of 879’004 (circa) inhabitants and run the optimization just 
once, we had to cap the number to a reasonable amount 
(14). The choice of the number 1000 ensures that 
randomized data for the users’ parameters satisfy the 
significance tests needed to verify their values fit the 
theorized distributions they have been generated from.   

The maximum percentage of unsatisfied demand (12) 
allowed must be chosen by the model developers.  

Each user’s individual demand and tolerance have been 
randomized from an estimated distribution. The data to 
evaluate the distributions from has been collected through 
a survey conducted in the city of Turin to e-commerce 
users. Through the survey, which received 655 useful 
responses, the parameters for the exponential distributions 
for both the parcels demand and customers’ tolerance in 
meters were identified. The distributions have been 
previously analysed to verify the absence of correlation and 
causation relationships between the different parameters 
involved inside the model. The demand generated is shown 
in Equation 16.  

 𝑑𝑒𝑚E	~	exp(37.2) 

𝑑𝑒𝑚E =
ln(1 − 𝑑_𝑟𝑎𝑛𝑑()E)

−1/37.2  
(16) 

The sub-parameter (17) is generated through the uniform 
distribution between the values 0 and 1 

 𝑑_𝑟𝑎𝑛𝑑()E	~	U(0, 1) (17) 

The tolerance parameter (18) is expressed in metres and has 
been randomized from the estimated distribution.  

 𝑡𝑜𝑙E	~	6670 ∙ 𝛽(1.23, 3.27) 

𝑡𝑜𝑙E = 6670 ∙ 𝛽v1(𝑡_𝑟𝑎𝑛𝑑()E, 1.23, 3.27)		 
(18) 

The sub-parameter (19) is generated through the uniform 
distribution between the values 0 and 1. 
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 𝑑_𝑟𝑎𝑛𝑑()E	~	U(0,1)	 (19) 

We have evaluated the correlation Pearson product-
moment correlation coefficient between each parameter 
and verified its significance through its t-test (20): all 
variables resulted not correlated. 

𝜌x,y =
∑ (𝑎{
|01 − 𝑎})(𝑏 − 𝑏})

W∑ (𝑎 − 𝑎})Y{
|01 ∑ Q𝑏 − 𝑏}RY{

|01

	

(20)	
𝐻� ∶ 𝜌x,y = 0 
𝐻1 ∶ 𝜌x,y ≠ 0 

𝑡 = 𝜌x,y�
𝑛 − 2
1 − 𝜌x,y

	

IF	𝑡 > 𝑡1v�Y
	THEN	𝐻1	ELSE	𝐻� 

The estimated distributions used to randomize the 
individual demand and tolerance parameters have been 
evaluated using Rockwell’s Arena Simulation Input 
Analyzer software: the criterium adopted to choose the best 
distribution to fit the data is the minimum square error 
criterium, for both the two formerly cited parameters the 
corresponding p-values are such that both 𝜒Y  and 
Kolmogorov-Smirnov Tests are satisfied. 

The users’ x,y coordinates are randomly generated through 
uniform distributions (21) between the respective lower 
and upper bounds.  

 𝑥E	~	U(lower_xE, upper_xE)	

𝑦E	~	U(lower_yE, upper_yE) 
(21) 

The values the bounds (22) assume depend on the interval 
the sub-parameter (23) belongs to.  

 (lower_xE, upper_xE, lower_yE, upper_yE)

=

⎩
⎪
⎪
⎨

⎪
⎪
⎧ −1500,500,−2200,1600
−4200,−500,−6300,−1800
−6000,−1600,−2300, 500
−6000,−1600,−500,1600
−6000,−1600, 2500,5200
−1600, 1600,2800, 5000
−1600, 3000,1600, 3000
−1100,2200,−5300,1600

circ_rand()E ≤ 0.09
0.09 < 	circ_rand()E ≤ 0.245
0.245 < circ_rand()E 	≤ 0.386
0.386 < 	circ_rand()E ≤ 0.496
0.496 < 	circ_rand()E ≤ 0.637
0.637 < circ_rand()E 	≤ 0.758
0.758 < 	circ_rand()E ≤ 0.855

> 0.855

 (22) 

The intervals bounds are linked to the cumulative 
distribution of the real Turin population among the 8 
districts the urban area is divided into. Reference data have 
been collected from the Municipality statistics office. 

The process of identifying the districts and postcodes 
bounds has been realized using the Google Maps Measure 
distance feature, the point corresponding to coordinates 
(0,0) located in Turin Porta Nuova metro station. 

The sub-parameter (23) value is generated through a 
uniform distribution between the values 0 and 1. 

 𝑐𝑖𝑟𝑐_𝑟𝑎𝑛𝑑()E	~	U(0,1) (23) 

3.3 Algorithm Initialisation 

The optimization has been carried out with the Microsoft 
Excel Solver add-in, developed by Frontline Solvers ®.  

The solving method we have selected is the Evolutionary 
one and its parameters have been set as follows:  

Table 1: Solver evolutionary method settings 

Constraint Precision = 0.000001 

Use Automatic Scaling = TRUE 

Mutation rate = 0.1 

Population size = 98 

Random seed = 0 

Maximum number of subproblems = 500 

Since the method chosen relies on genetic and evolutionary 
algorithms, to speed up the calculations both variables 
initialization and bounds identification have been carried 
out. 

The APLs coordinates have been forced to be integer 
values (13) and limited to the area the randomized 
population is generated from (8, 9), initialized in the centre 
of gravity of each one of the 33 postcodes 𝐶𝐴𝑃, equal to 
the average of the coordinates bounds (24). 

 𝑥. = (min(xE) + max(xE))/2	
𝑦. = (min(yE) +max(yE))/2 ∀𝑗 ∈ 𝐽 (24) 

then de-activated it (25). 

 𝑎𝑐𝑡𝑖𝑣𝑒. = 0 ∀𝑗 ∈ 𝐽 (25) 

4. Numerical Experiment  

Instead of fixing the parameter (12) and randomizing the 
users sample many times to check how much the variable 
(3) changes once an optimization is done and its solution 
fixed, our intent is to understand for which value of the 
variable (12) the number of APLs starts converging to its 
cap (15).  

The initial baseline scenario assumes an initial value of 
unsatisfied demand allowed of 35%. Figure 1 shows the 
solution for the algorithm on the map of Turin.  We then 
proceed on reducing the allowed unsatisfied demand by 5% 
at a time. Figure 2 shows the number of APLs according to 
different unsatisfied demand parameters. It is clear from 
the figure that the number of locations needed ramps up 
below a 30% threshold, meaning that it is more difficult to 
cover marginal demand. 
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Figure 1 Location and number of APLs for an unsatisfied 
demand of 30% 

 

 
Figure 2 Number of APL to activate according to different 
unsatisfied demand thresholds 

The identified solutions may have a limitation insofar as the 
algorithm may not reach the optimal solution in due time. 
However, by randomizing the sample of users and running 
the optimizations again, the values evaluated in (12) would 
still be the same (not considering extreme cases or 
exceptions).  

Another implicit assumption of the model is that the 
variable (11) doesn’t take into consideration the variance of 
each user’s tolerance neither it allows the demand to be 
accounted for just a percentage, possibly according to how 
the distances between the users and the nearest APLs is 
bigger than their tolerances. 

5. Discussion and Conclusion 

Our study intended to describe a framework to approach 
the last-mile issue concerning APLs identification and 
location.  

To optimize the problem, we have used Microsoft Excel 
Solver where the different model constraints are 
represented by the very formulas evaluated inside the 
spreadsheet cells. Model parameter involved both 
subjective parameters, such as the willingness for 
customers to move to the parcel locker and customers’ 
demand, and objective parameters as population 
distribution across the considered geographical area. 
Subjective parameters were retrieved from a survey to e-
commerce users.  

The optimization algorithm was tested with a numerical 
experiment based on the city of Turin. Since it was possible 
to assume that the urban population is homogenous 
towards APL utilization, the optimized solution scattered 
the different identified APLs across the considered area, 
placing more than one facility in the most populated ones. 
The number of the APLs to locate, instead, seems to follow 
an exponential distribution converging to the half of the 
maximum urban postcodes (14 ~ 16 versus 33) for a 
reasonable amount of maximum estimated percentage of 
unsatisfied demand equal to 30%. 

Through this study, space planners are able to discern  the 
number and potential locations to allow to private 
operators for setting up an APL network. LSPs on the 
other hand are able to have an estimation of how many 
APLs are needed to cover a predetermined amount of 
demand by the final users.  

This study has some limitations. Difficulties and 
assumptions play a very important role in the problem 
modelling: all the model parameters rely on estimated 
distributions and maths linked to human behaviour which 
could change drastically from time to time and from one 
person to the other one; the optimization being carried out 
takes a not negligible amount of time before converging to 
a solution, and this might be a problem when increasing the 
number of users to cover the whole population of the city. 

Future research will focus on adding new constraints to the 
model, such as the volumetric capacity of the APLs or the 
minimum distance between two facilities, and to change the 
optimization method to a mathematical one, as convex 
quadratic mixed integer modelling models, to both shorten 
the optimization times and provide a more reliable global 
solution. 
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