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Abstract: In manufacturing industries, employee performance and industry productivity are affected by many factors related 

to line efficiency and workforce well-being. The new technologies and the Industry 4.0 paradigms lead to a change in the 

operator’s role. According to recent scientific studies, in the next years, workers will be employed more in cognitive than in 
physical tasks due to the increasing adoption of innovative and autonomous devices in the manufacturing process. Operators 

are exposed to physical and cognitive overload risks, in particular in assembly lines. To this concern, one of the most used 

methods in the operative phase consists of job rotation. It is a wide applicated method to reduce operators’ physical fatigue, 

ensuring high production performances. Regarding cognitive fatigue, the design and schedule of human-based assembly 
systems require a joint balancing between production system performance and operator’s well-being. A model that schedules 

job rotations, minimizing the cognitive ergonomic risk of assembly line operators, is developed. Consistent with the paper aim, 

the authors propose a mixed-integer nonlinear programming model allowing the balance of each operator's cognitive workload, 

meeting the production rate of an assembly line. The mental workload is evaluated using the Cognitive Load Assessment for 
Manufacturing (CLAM) method. Results show the model effectiveness in identifying the job rotation schedules that achieve 

cognitive ergonomic risk minimization and productivity goals.  
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I. INTRODUCTION 

Millions of people in the world are affected by mental 

health problems at work [1]. Common mental disorders 

(e.g. anxiety, bipolarity, acute stress) in about 17.6% of 

the global working population are present [2]. Recent 

surveys [3] and reviews [4], [5] pointed out that 

inappropriate work organisation and excessive working 

demands are the primary cause of these disorders. 

Financial implications for companies and governments 

are related to stress and psychological risks. In Europe, 

about 617 billion euros per year is the cost due to mental 

illness symptoms, including employers’ expenses (i.e., 

absenteeism, presenteeism, turnover and loss in 

productivity) and social distress  [6]. The smart factory 

of the future aims not only to optimize processes and their 

sustainability but also to give the worker a central role in 

this scenario. In this context, preserving workers’ well-

being plays a role of paramount importance [7], [8]. On 

the one hand, the latest global policies lead to an 

increased focus on workers’ wellness and safety [9]. On 

the other hand, the new technologies lead to an increase 

in cognitive workload in manufacturing systems 

considered “human-centred”, where human operators 

interact with intelligent devices all around [10]. 

Consistent with this trend, the interest in human cognitive 

factors related to manufacturing systems has increased in 

recent years [11]. 

Moreover, recent research show a strong relationship 

between musculoskeletal disorders (MSDs), affecting 

almost 50% of human workers [12],  and psychological 

disorders [13]. In many cases, the human motor tasks 

evaluated according to the well-known Fitts’ law were re-

adjusted, including the psychomotor aspects [14]. 

Therefore, an overall ergonomic evaluation cannot 

ignore cognitive workloads [15].  

In light of these considerations, the study of 

methodologies to assess the human cognitive factors 

have to integrate the well-known methods of physical 

factors assessment [16], [17].  

Thorvald and Lindblom [19] define cognitive workload 

as the mental effort required by the human cognitive 

system to perform a specific task. According to Sweller 

et al. [18], the cognitive workload depends on the 

working memory resources and the amount of 

information to be processed to perform an assigned task. 

Consistent with these considerations, the more common 

cognitive processes in the production systems are 

perception, decision-making, problem-solving, attention, 

and memory. Similarly, the cognitive workload is 

defined as the human response to the external stimuli due 
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to task complexity, production demand, and work 

environment  [19].  

According to Kalakoski et al. [20], cognitively straining 

conditions can affect task performance and system 

productivity.  When an operator manages too much 

information, a phenomenon, identified as the 

“information overload problem”, occurs. The manual 

assembly line is considered an industrial process with 

frequent cognitive demands variability [21], and the 

information overload problem frequently happens [22]. 

In [23], a holistic information-based model is developed 

to estimate the performance time of operators of different 

ages and sex involved in cognitive or motor tasks. The 

effectiveness of the model is validated in a real full-case 

study.  

Currently, in scientific literature, there is a lack of studies 

regarding cognitive ergonomics in industrial systems. 

Although the cognitive load is widely investigated in 

psychology, there are very few applications in the 

industrial context [24], [25]. Therefore, methodologies 

that evaluate the cognitive ergonomic risk and ensure a 

high production rate in manual assembly lines are not 

deeply investigated.  

This work aims to develop a model that schedules a job 

rotation, minimizing the cognitive ergonomic risk of 

operators involved in assembly lines. Consistent with this 

end, the authors propose a mixed-integer nonlinear 

programming model that balances the cognitive 

workload of each operator, meeting the production rate 

of an assembly line. Risk and its acceptability are 

evaluated using the Cognitive Load Assessment for 

Manufacturing (CLAM) method [26]. The balance of the 

cognitive workload is achieved by minimizing the 

coefficient of variation of the average CLAM index. 

The remainder of this paper is organized as follows: a 

theoretical background on the existing methods for the 

cognitive workload evaluation and the CLAM method 

are introduced in sections 2 and 3, respectively; the 

model developed is introduced in Section 4; a numerical 

case study and the discussion of the results achieved are 

described in section 5. Finally, conclusions and further 

research are in section 6. 

II. COGNITIVE WORKLOAD EVALUATION 

High cognitive demand can affect the operator's mental 

health and his/her performance; this implies an 

increasing interest in Cognitive Load Theory (CLT). 

According to recent studies, CLT investigates the 

interaction between cognitive structure, information and 

its implication [18].  

A growing body of literature developed models to assess 

the human cognitive workload [27]. Mental load, mental 

effort, performance, and stress level are used as 

measurable dimensions to describe the cognitive 

workload [28]. Cognitive workload measurements can be 

divided in three main categories: subjective, 

performance-based, and physiological measures:  

• Subjective measures: the subject's cognitive 

workload is evaluated using a set of 

questionnaires or different rating scales. 

Consistent with this end, a survey is conducted 

when the subject(s) has(have) completed an 

assigned task to evaluate the cognitive effort 

perceived during the task execution. The output 

of the survey provides a Task Workload Index 

(TWI) in a given range, depending on the 

methodology adopted. The subjective methods 

include the NASA Task Load Index (NASA-

TLX) [29], the Subjective Workload 

Assessment Technique (SWAT) [30], the 

Modified Cooper-Harper Scale [31], and many 

others. 

• Performance-based measures: the performance 

measures include control models, generally 

adopted for monitoring the evolution of task 

performance over time; included in this 

category are completion time, reaction time or 

the number of errors as drivers to quantify the 

cognitive workload.  

• Physiological measures: the cognitive workload 

is evaluated on changes in the physiological 

parameters of the subject due to a change of 

cognitive demand required by the task to be 

performed. This category includes oxygen 

consumption evaluation, heart rate 

measurement, ongoing Electroencephalography 

(EEG), and others. 

Unfortunately, most of these techniques are not 

applicable in the industrial work environment since they 

require expensive and impractical equipment that may be 

uncomfortable for the worker during the task(s) 

execution. 

According to the experiences reported in the scientific 

literature, the above-mentioned cognitive workload 

measurements can be used exclusively by experts and, in 

most cases, do not provide an immediate output.  

III. COGNITIVE LOAD ASSESSMENT 

MANUFACTURING METHOD 

The purpose of the CLAM method consists of assessing 

the cognitive workload of the operator in accomplishing 

a manufacturing task [26]. The CLAM method supports 

the workstation design to reduce the cognitive 

workload. It is developed to quickly assess cognitive 

workload connected to tasks and designed workstation. 

The CLAM method can be applied by adopting a free 

online tool (http://www.clam.se/tool.html).  

The CLAM method consists of 11 factors of evaluation, 

all using common terminology from the manufacturing 

industry. All factors are assessed on a scale from 0 to 8, 

about:blank
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where the higher assessment indicates a more 

cognitively challenging task (figure 1).  

 

Fig. 1 The scoring levels of cognitive workload in CLAM. 

The 11 evaluated factors are divided into two categories 

identified as task- and workstation- based. A weight, 

included in the range between 0-1, is assigned to each 

factor, as shown in brackets. A brief description of each 

factor is shown below:   

▪ Task-based factors 

Saturation (0.17): indicates how much of the available 

time is occupied by work tasks. It is measured by the 

percentage of the planned busy time. 

Variant flora (0.11): estimates the level of product 

variation on a workstation. It is measured by the 

percentage of the same products considering all available 

variants. 

Level of difficulty (0.07): estimates the physical and 

cognitive effort to perform a task. It is measured from a 

subjective perspective. 

Production awareness (0.07): indicates how much 

attention the task requires. It is measured from a 

subjective perspective. 

Difficulty of tool use (0.02): relates to the type of tools 

used with their subjective complexity. It is measured 

from a subjective perspective. 

▪ Workstation-based factors 

Number of tools used (0.01): indicates the number of 

tools used. 

Mapping of workstation (0.13): indicates the 

correspondence between the workstation layout and the 

assembly sequence. It is measured from a subjective 

perspective. 

Parts identification (0.11): indicates the presence or 

absence of alternative parts for the finished product 

assembly.  

Information cost (0.12): indicates the physical or 

cognitive effort required to identify the information, i.e., 

if the information is easily accessible or not. It is 

measured from a subjective perspective. 

Quality of instruction (0.11): indicates the quality of the 

instructions provided to the worker to accomplish the 

task. It is measured from a subjective perspective. 

Poke-a-yoke (0.07): indicates the presence or absence of 

poke-a-yoke solutions or other types of constraints. It is 

measured from a subjective perspective. 

IV. MODEL DESCRIPTION 

A mixed-integer nonlinear programming model is 

proposed to balance the cognitive ergonomic risk in an 

assembly line.  Consistent with the aim of the paper, 

differently aged and skilled operators were involved on a 

single product assembly line. All operators are assumed 

to be constantly exposed to tasks, considering a different 

cognitive demand for each workstation (WS). The 

cognitive workload increases with the increasing 

flexibility required by each task. In other words, the 

operator's capability to perform assigned tasks by 

adopting different approaches leads to higher cognitive 

demands [32], [33]. 

The work shift is divided into a given number of time 

slots (𝐾), and the operators are assigned to the WSs in 

each time slot. The operator's cognitive ergonomic risk 

(ER), evaluated according to the CLAM method, is 

affected by the time required to perform the task on each 

WS. It is assumed that the operators assigned to each WS 

can rotate at the start of each time slot. The time required 

for the job rotation is assumed constant and identical for 

all the workstations, which leads to a slight reduction in 

productivity.  

The constraints ensured by the model are summarized 

below:  

a. The number of units to be assembled in a work 

shift. 

b. The operating time of the operator for each WS. 

c. The cognitive workload of each WS, that cannot 

exceed 8 (maximum threshold level evaluated 

adopting the CLAM method). 

The variables of the model are represented by the binary 

variables 𝑥𝑖,𝑗,𝑘, where the index i identifies the i-th 

operator among the total number of operators n, the index 

j identifies the j-th WS among m workstations and the 

index k identifies the time slot in K time slots. 

Consequently, 𝑥𝑖,𝑗,𝑘 is equal to one if the i-th operator is 

assigned to the j-th workstation during the k-th time slot 

and equal to zero otherwise. 

The weighted CLAM value for the i-th operator (𝐶𝐿𝐴𝑀𝑖) 

during the work shift is provided by equation 1, 

considering a time-weighted average of the values of  
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𝐶𝐿𝐴𝑀𝑗 at the respective j-th workstation, by means of the 

values 𝑊𝑇𝑖,𝑗, given in equation 2.  

𝐶𝐿𝐴𝑀𝑖 = ∑ 𝐶𝐿𝐴𝑀𝑗 ∙
𝑊𝑇𝑖,𝑗

𝑇

𝑚
𝑗=1     (1) 

𝑊𝑇𝑖,𝑗 = ∑ 𝑇𝑘
𝐾
𝑘=1 ∙ 𝑥𝑖,𝑗,𝑘    (2) 

𝑇 = ∑ 𝑇𝑘
𝐾
𝑘=1      (3)

    

The value 𝐶𝐿𝐴𝑀𝑗, estimated in a net operating time (𝑇) 

(eq. 3), is evaluated by adopting the CLAM method 

described in the previous section according to [26]. The 

eventual working time (𝑊𝑇𝑖,𝑗) of the i-th operator at the 

j-th workstation, during the k-th time slot, is given in 

equation 2 and, in equation 3, 𝑇𝑘 identifies the duration 

of the k-th time slot. 

The model minimizes the collective cognitive ergonomic 

risk (eq. 4), assumed represented by the coefficient of 

variation (𝐶𝑉𝑐), given in equation 5, of the average 

CLAM index (𝐶̅):  

𝑂𝐹 = min
{𝑥𝑖,𝑗,𝑘}

𝐶𝑉𝑐 with 𝑥𝑖,𝑗,𝑘 ∈ {0,1}, ∀ 𝑖, 𝑗, 𝑘   (4) 

𝐶𝑉𝑐 =
𝜎𝐶

�̅�
      (5)

  

where 𝐶𝑉𝑐 is defined as the ratio of the standard deviation 

(𝜎𝐶) and the average CLAM index (𝐶̅) of the 𝑛 operators 

during the work shift, as reported in equations 6 and 7, 

respectively. 

𝜎𝐶 = √
1

𝑛
∑ (𝐶𝐿𝐴𝑀𝑖 − 𝐶̅)2𝑛

𝑖=1     (6)

   

𝐶̅ = ∑
𝐶𝐿𝐴𝑀𝑖

𝑛

𝑛
𝑖=1       (7)

   

For the calculations, it was assumed an initial condition 

identified with   

𝑘 = 0,  𝑥𝑖,𝑗,0 = 0 ∀ 𝑖 = 1, … , 𝑛 𝑎𝑛𝑑 ∀ 𝑗 = 1, … , 𝑚.  

Assuming a given number of units to be assembled in a 

work shift (𝑃𝐿𝑇), the total production of the line in a work 

shift (𝑃𝐿) will be evaluated according to equation 8.       

𝑃𝐿 = min
{𝑗}

𝑃𝑗      (8) 

with 𝑃𝐿 ≥ 𝑃𝐿𝑇 

where the total production of the j-th workstation (𝑃𝑗) in 

a work shift depends on the total number of parts 

assembled (𝑄𝑖𝑗 ) by the i-th operator at the j-th 

workstation in a work shift, as shown in equations 9 and 

10.  

𝑃𝑗 = ∑ 𝑄𝑖𝑗  𝑛
𝑖=1       (9) 

𝑄𝑖𝑗 = ∑ 𝑞𝑖,𝑗,𝑘
𝐾
𝑘=1                  (10) 

Assuming a standard operation time of the j-th 

workstation (𝑡𝑗), a time loss due to job rotation (𝑡𝑟), and 

a productivity factor of the i-th operator at the j-th 

workstation (𝑘𝑖𝑗), the number of parts assembled by the 

i-th operator at the j-th workstation, during the k-th time 

slot (𝑞𝑖,𝑗,𝑘) is estimated in equation 11.  

𝑞𝑖,𝑗,𝑘 =
[𝑇𝑘−𝑡𝑟(𝑥𝑖,𝑗,𝑘−𝑥𝑖,𝑗,𝑘−1)]

𝑡𝑗∙(𝑘𝑖𝑗)
𝑥𝑖,𝑗,𝑘               (11) 

The 𝑘𝑖𝑗-parameter depends on the operator's skills and 

age. Its value is included in the ranges ]0; 1] where zero 

corresponds to a not skilled ageing worker, and 1 

identifies a skilled young worker according to a 

subjective evaluation.  

Three constraints (𝐶i) are identified:  

• each WS can be used by only one operator 

during each time slot (𝐶1)  

𝐶1: ∑ 𝑥𝑖,𝑗,𝑘 = 1𝑛
𝑖=1  ∀ 𝑗 = 1, … , 𝑚 𝑎𝑛𝑑 ∀ 𝑘 = 1, … , 𝐾   

• each operator can be assigned only to one WS 

during each time slot (𝐶2) 

𝐶2: ∑ 𝑥𝑖,𝑗,𝑘 = 1𝑚
𝑗=1  ∀ 𝑖 = 1, … , 𝑛 𝑎𝑛𝑑 ∀ 𝑘 = 1, … , 𝐾   

• The weighted ergonomic risk of each i-th 

operator cannot exceed the maximum CLAM 

allowed (𝐶𝐿𝐴𝑀𝑖
𝑚𝑎𝑥)  (𝐶3) 

𝐶3: 𝐶𝐿𝐴𝑀𝑖 ≤ 𝐶𝐿𝐴𝑀𝑖
𝑚𝑎𝑥  

V. NUMERICAL CASE STUDY AND 

DISCUSSION 

The model is tested on a numerical case study. Four 

assembly workstations (𝑚 = 4) and four operators (𝑛 =

4) with different ages and skills are considered. The work 

shift duration is set to 480 [𝑚𝑖𝑛] and is divided into five-

time slots (𝑘 = 5). The time and rests duration are 

summarized in figure 2. 

 

Fig.2  Time slot (Tk) and rests duration (ri), for each slot (k), expressed 

in minutes 

The standard operation time assumed for each of the four 

workstations (𝑡𝑗) is provided below (table 1). The 

production time loss (𝑡𝑟)  due to job rotation, is equal to 

2 minutes. 

TABLE I 

STANDARD OPERATION TIME FOR EACH WS [𝑠] 

WS 

𝑗 1 2 3 4 

𝑡𝑗[𝑠] 30 30 35 30 

In table 2, for each workstation, the cognitive workload 

(𝐶𝐿𝐴𝑀𝑗) has been evaluated according to [26]. 
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TABLE II 

CLAM INDEX OF THE J-TH WORKSTATION 

WS 

𝑗 1 2 3 4 

𝐶𝐿𝐴𝑀𝑗 1 3 5 7 

The assembly task performed in WS4 requires a higher 

cognitive workload. On the contrary, the assembly tasks 

in WS1 are more accessible since the tasks are not very 

flexible (the operator takes no decisions), and a guided 

procedure was applied.    

Different scenarios have been investigated by varying the 

parameters 𝑘𝑖𝑗-.  In the first scenario (S1R), four skilled 

and young workers (i.e., Op1, Op2, Op3, and Op4) were 

considered, assuming the same 𝑘𝑖𝑗-parameter (𝑘𝑖𝑗 = 1) 

for all. In the second scenario (S2R), four operators of 

different ages and skills have been considered (table 3). 

In the third scenario (S3R), four operators with different 

skills for each WSj have been considered (table 4). In 

other words, in this case, the same operator can be skilled 

in using one WS, and less expert on another WS.   

TABLE III 

OPERATORS’ PROFILE ASSUMED FOR SCENARIOS  

S2 AND S2R 

ID 

operator 
kij Description 

Op1 0.1 
Aged and not skilled 

operator 

Op2 0.6 Aged and skilled operator 

Op3 0.4 
Young and not skilled 

operator 

Op4 1.0 
Young and skilled 

operator 

The results of scenarios S1 and S1R were to be expected. 

In S1, operators were assigned to WSs without any 

preference. In this case, all operators have the same 

profile; therefore, the model provides more job schedule 

alternatives.   In the case of job rotation (S1R), the 

operators are assigned in each time slot to one WS, and 

the job rotation is considered. Here, the operators in each 

time slot are assigned to a WS different from the previous 

one. Therefore, the cognitive load is balanced since each 

operator accomplishes tasks on WSs with both low and 

high cognitive workloads. In this case, four WS and four 

operators were assumed.  The mental effort required by 

different operators is slightly different since all operators 

were assigned to the same WS for two slots.  

TABLE IV 

OPERATORS’ PROFILE ASSUMED FOR SCENARIO S3 

The results of scenario S2 showed a schedule depending 

on the cognitive workload of WSj, and the profile of each 

operator. In this case, the minimum value of the 𝑪𝑽𝒄 is 

achieved by assigning the WSs with low workload (e.g., 

WS1) to operators with low performance (e.g., Op1). 

Similarly, WSs with a high workload (e.g., WS4) were 

assigned to young and skilled operators (e.g., Op4). In the 

case of job rotation (S2R), the WSs with higher 

workloads are assigned more frequently to more skilled 

and younger operators. 

The operators’ scheduling in the last scenario (S3R) is 

more complex to predict. In this case, the operators’ 

performance is very close to real industrial cases, where 

operators are more skilled in accomplishing tasks on a 

specific workstation. The results showed that the 

assignment of more skilled workers to specific WSs 

occurs more frequently. For instance, the assignment of 

Op4 to WS4 is rather frequent since he/she is the operator 

with the best performance on this WS. On the contrary, 

the assignment of less skilled operators on specific WSs 

is not recurring (e.g., Op1 to WS2 and WS4).   

TABLE V 

ASSIGNMENTS OF OPERATORS (𝑖 = 1, … , 4) TO WSs DURING 

THE WORK SHIFT (𝑘 = 1, … , 5) IN THE SCENARIO S3 

Workstation Time Slot (𝑘) 

 1 2 3 4 5 

WS1 Op1 Op1 Op1 Op3 Op1 

WS2 Op2 Op3 Op4 Op2 Op3 

WS3 Op3 Op4 Op3 Op1 Op2 

WS4 Op4 Op2 Op2 Op4 Op4 

The coefficient of variation of the average CLAM index, 

(𝐶𝑉𝑐), the total production of the line in a work shift (PL), 

and the average workstation production (𝐴𝑣𝑃𝑗), 

evaluated for each scenario, are summarized below. 

TABLE VI 

COEFFICIENT OF VARIATION OF THE AVERAGE CLAM 

INDEX (CVC), TOTAL PRODUCTION (PL), AND AVERAGE WS 

PRODUCTION (AV PJ) IDENTIFIED FOR EACH SCENARIO 

Scenario CVc PL Av Pj 

S1 0.65 115.71 130.18 

WSj k1j k2j k3j k4j 

WS1 0.7 0.8 0.8 1.0 

WS2 0.2 1.0 0.7 1.0 

WS3 0.4 0.6 0.6 0.6 

WS4 0.2 0.5 0.3 1.0 
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S1R 0.10 112.86 126.95 

S2 0.65 15.00 20.76 

S2R 0.10 17.95 20.28 

S3R 0.14 26.5 58.74 

According to the results in table 6, the model minimizes 

the objective function (eq. 4), providing the minimum 

value of the cognitive ergonomics risk in S1R, S2R and 

S3R. In these scenarios, the assembly tasks have been 

assigned adopting the job rotation schedule identified by 

the model application. Comparing the results with and 

without job rotations, although the cognitive ergonomic 

risk was reduced in the second case, the total production 

of the line in a work shift and the average workstation 

production are very close values. In fact, if, on the one 

hand, the performance of a single worker improves, the 

assembly line performance doesn’t change since it is 

affected by time losses due to job rotation (𝑡𝑟).   

The comparison between scenarios with young and 

skilled workers (S1 and S1R) compared to cases where 

workers with different skills are employed (S2, S2R, and 

S3R) shows the benefits of smart operators in an 

assembly line. In these cases, it is possible to observe that 

skilled workers allow increasing 3-4 times the assembly 

line performance. 

VI. CONCLUSION AND FURTHER 

RESEARCH 

The increasing adoption of innovative devices in the 

manufacturing context leads to changes in the tasks 

performed by the operators. Recent studies proved that 

the Industry 4.0 revolution is favouring the increase of 

cognitive tasks and the reduction of physical tasks, 
increasingly being entrusted to innovative devices.  

In the current research work, a model allowing to 

minimize the cognitive ergonomic risk of operators 

involved in an assembly line is proposed. Risk and its 

acceptability in this paper are evaluated using the CLAM 

method. The developed model allowed to identify an 

operator-workstation schedule, adopting job rotation, 

ensuring the minimization of the workers' cognitive 

ergonomic risk, in other words preserving them from the 

risk of cognitive overload e. Although the production 

line's performance is slightly decreased, the well-being of 

the workers is preserved.  

However, the research work requires more investigations 

to assess the model reliability in more complex industrial 

cases. The proposed model is the first step in assessing 

the cognitive workload. It provides the decision-maker 

with a “preliminary” job schedule adopting a sustainable 

organisational strategy from an economic perspective. In 

this regard, an important assumption of the model 

consists of the workers’ adaptability to perform all the 

assembly tasks on all the workstations. Since, in many 

cases, the training of workers requires cost and time and 

this assumption is not always true, further constraints 

should be considered in the model. It is possible that, 

under these conditions, job rotation could further reduce 

the line performance.   
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