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Abstract: In recent years, interest in techniques and approaches capable of ensuring the efficiency and sustainability 
of agri-food chains has grown considerably. In this paper, we explore the opportunities offered by the use of unmanned 
aerial vehicles (UAVs) for precision agriculture. First of all, we provide an overview about the possible alternatives in 
terms of aerial platforms and sensors for image acquisition. Secondly, starting from the technical constraints, a 
preliminary cost analysis is carried out. We refer to a hypothetical small-medium farm in the olive sector, which wants 
to adopt a UAV to make its agricultural practices more efficient. In particular, we make a comparison between two 
types of UAV, fixed-wing and rotary-wing. The main result of our analysis is that the purchase of a UAV for own use 
is still quite expensive, especially if the field to be monitored is limited in size. However, the production capacity of 
the UAV can be better exploited if nearby farms are also served. Finally, we identify the main current limitations of 
UAV technology in agriculture and the possible challenges that should be faced in the future in order to achieve large-
scale spread. 
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1. Introduction 

According to the Food and Agriculture Organization of the 
United Nations (FAO), food production should increase by 
70% by the year 2050, due to the expected growth of the 
world’s population (FAO, 2009). However, due to many 
inefficiencies in the food chains (Papargyropoulou et al., 
2014), up to a third of the food produced in the world is 
still wasted (Gustavsson et al., 2011): in the production 
process, crops often remain unharvested because of the 
bad work organization, while in the distribution phase, due 
to information asymmetries between producers and 
consumers, much of the food that reaches retailers remains 
unsold until decaying (Alexander et al., 2017). Basically, a 
large amount of water and energy is wasted and a great 
quantity of greenhouse gases is still generated. Within this 
difficult and extremely complex scenario, new technologies 
and approaches are spreading to make agricultural supply 
chains sustainable and safe: modern traceability systems 
(Mirabelli and Solina, 2020; Vizza et al., 2018; Tradigo et 
al., 2019), wireless sensor networks (Ojha et al., 2015), 
remote sensing (RS) (Zarco-Tejada et al., 2012). Precision 
agriculture (PA) is one of the many possible applications of 
RS, being a research topic, whose interest has considerably 
grown in recent years. According to Zhang and Kovacs, 
(2012), PA is “the application of geospatial techniques and 
sensors to identify variations in the field and to deal with 
them using alternative strategies”. Basically, PA is a novel 
approach, where everything is performed at the right time, 
at the right place, and with the right intensity. Field is not 
treated homogeneously as in the past, but is divided into 

zones, according to different needs and local features. This 
implies reduction in the use of resources, limitation of 
environmental impact, increase in yield (Mulla, 2013). For 
example, it is possible to irrigate only the areas of the field 
which really need water, and this is crucial, considering that 
agriculture consumes the majority of the world’s water 
resources (about 70%) (Gilbert, 2012). Other PA’s 
common applications are: weed mapping and management, 
vegetation growth monitoring and yield estimation, 
vegetation health monitoring and disease detection, crops 
spraying (Tsouros et al., 2019).  Satellites and manned 
aircrafts have been PA's enabling technologies in the past, 
while current research is focusing on the opportunities 
offered by the internet of things (IoT) and unmanned aerial 
systems (UASs) or vehicles (UAVs).  

The aim of this paper is twofold: (1) we present an overview 
about the use of UAVs in precision agriculture, namely we 
illustrate the possible alternatives in terms of aerial 
platforms and sensors for image acquisition. (2) Moreover, 
we provide a preliminary cost analysis on the use of the 
UAVs in agriculture, with reference to a small-medium 
farm in the Southern Italy. Such an analysis can be very 
useful for any farmer who wants to approach PA for the 
first time. Current technology limitations and possible 
future challenges are also detected.   

The remainder of this paper is organized as follows. Section 
2 shows the main possibilities in terms of aerial platforms 
and sensors for PA, the related work and our contribution. 
In Section 3, we present a preliminary cost analysis, 
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exploring also some technical aspects. Section 4 detects the 
main current limitations and some possible future 
challenges. We outline the conclusions in Section 5. 

2. Literature review 

Remote sensing is used in PA, by mounting sensors on 
aerial platforms, with the aim to acquire information about 
soil and crop characteristics. Such sensors can collect 
energy, reflected (i.e., visible and near-infrared (NIR)), 
emitted (thermal infrared (TIR)), backscattered.  

The first technologies for remote sensing in agriculture 
were satellites and manned aircrafts. The main restriction 
of satellites is the limited spatial resolution, which makes 
monitoring of many field crops ineffective (Gago et al., 
2015). Moreover, they have a restricted temporal 
availability (real-time monitoring is not possible) and their 
performance usually depends on weather conditions. 
Basically, the use of satellites for images acquisition is 
considered expensive, not flexible, and poorly practicable, 
with reference to PA (Stafford, 2000). Manned aircrafts 
have similar limitations. In particular, multiple and 
expensive flights are necessary to obtain a high number of 
images (Tsouros et al., 2019).     

Today, agriculture needs monitoring and sensing systems, 
which are able to collect data in a cheap and effective 
manner. For these reasons, investments in unmanned aerial 
vehicles (UAVs) have been growing in recent years. One of 
the main advantages of UAVs is the ability to fly at low 
altitude, which improves the quality and resolution of the 
acquired images (Gago et al., 2015). Furthermore, they are 
extremely more flexible, cheap and easy to use than 
manned aircrafts or satellites (Tsouros et al., 2019). 

2.1 UAVs: a classification 

Next, we list and briefly describe the main types of 
unmanned aerial vehicles, useful for PA. In literature, 
several classification criteria exist: Watts et al. (2012) 
classify the UASs according to their size, features, and flight 
endurance; Mukherjee et al. (2019) distinguish between 
fixed- and no-wing systems, while Cai et al. (2014) make a 
size-based classification (i.e., small tactical, miniature, 
micro). In this research work, we distinguish between fixed- 
and (F-W) rotary-wing (R-W) UAVs, as in (Tsouros et al., 
2019). This is a quite recognized classification, useful for 
the aims of this paper. 

Fixed-Wing: these UAVs have a fixed wing and need a 
runway for takeoff and landing. They are quite expensive, 
but have several advantages, such as high endurance 
(battery), ability to fly at high speeds, and significant 
payload. For these reasons, they are preferred when 
monitoring large areas (Tsouros et al., 2019; Zarco-Tejada 
et al., 2012).    

Rotary-Wing: these UAVs have one (helicopter) or more 
rotors (multi-copter). In this case, take-off and landing are 
vertical, then there are no special runway requirements. On 
one hand, they are easily maneuverable and quite cheap; on 
the other hand, they only guarantee low speed and a more 
limited flight time. However, considering the frequent 

limited size of the areas to be monitored, they are currently 
the most used for PA (Gago et al., 2015; Tsouros et al., 
2019; Mukherjee et al., 2019). Multi-copters are usually built 
out of light materials (aluminum, carbon fiber) and 
equipped by 4 (quadcopter), 6 (hexacopter), or 8 
(octocopter) engines.    

Other systems: balloon (or blimp) and bio-mimicry-based 
UAVs belong to this category. Such systems are slightly 
used in PA. Lightness, high endurance, and low speed are 
the main characteristics of the balloon-based UAVs 
(Tsouros et al., 2019). Bio-mimicry-based UAVs are instead 
bio-inspired, as they attempt to replicate the structure of 
birds, in order to have less wind resistance.  

2.2 Sensors: main solutions 

Each UAV is equipped with primary and secondary 
sensors. Primary sensors are essential for UAV functioning, 
especially for its positioning (e.g., Global Positioning 
System), and motion (e.g., accelerometers and gyroscopes). 
Secondary sensors add functionality to the UAV, 
depending on the purposes to be achieved. Some examples 
are temperature, humidity, proximity, and stabilization 
sensors (Mukherjee et al., 2019). However, in this 
subsection we briefly focus on spectral sensors, which are 
very useful for PA since they can acquire images beyond 
the visible spectrum of light. 

Multi-spectral and hyper-spectral sensors: the main difference 
between these two types of sensors lies in the number and 
width of the bands they can acquire. Multi-spectral sensors 
can capture 5-12 bands, while hyper-spectral ones can 
capture hundreds or thousands of bands, even if the 
bandwidth is narrower (Yang et al., 2017).  

Thermal sensors: all objects with a temperature above -273 °C 
emit radiation. Thermal remote sensing means measuring 
the radiation emitted by the surface of an object and 
converting it into temperature, without having direct 
contact with the object (Prakash, 2000). The possibility of 
monitoring the temperature of soil and crops allows to 
efficiently support irrigation and harvesting planning 
activities.  

The information contained in the images acquired by the 
sensors is often not visible to the human eye therefore it 
must be properly processed and transformed into 
something usable (Mukherjee et al., 2019). The acquired 
data usually support the monitoring of plant nitrogen 
content, water stress in crops, soil moisture, crop height, 
weed presence. In other cases, the acquired images allow 
the mapping of crop species or fires, the geo-referencing. 
From a sustainability point of view, real-time identification 
of plants state allows a more diversified and efficient use 
not only of water resources but also of pesticides and 
fertilizers (Mukherjee et al., 2019; Tsouros et al., 2019). 
Basically, the large amount of data and images, collected 
through the use of the above sensors, is frequently 
“translated” into a set of remote indices, which can support 
decision-making in the field (Mukherjee et al., 2019). The 
Normalized Difference Vegetation Index (NDVI) is one of 
the most frequently used indicators and exploits the leaf 
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reflectance to detect the greenness areas on the ground 
(Zarco-Tejada et al., 2012).   

2.3 Related work and our contribution 

Precision agriculture is very promising, especially in terms 
of environmental sustainability, however its advantages are 
often not fully perceived by farmers. According to Paustian 
and Theuvsen (2017), the likelihood of adopting practices 
related to precision farming increases if the farmer’s 
experience is very high (i.e. greater than 16 years) or very 
low (i.e. less than 5 years). This refers on one hand to 
experienced and well-educated farmers, on the other to 
young farmers, who are used to rapid changes and well 
aware of the economic advantages that modern 
technologies can bring. Therefore, there are many other 
farmers who tend to be less likely to implement precision 
farming approaches. The analysis carried out by Caffaro 
and Cavallo, (2019) shows that the farmer’s low education 
is strongly associated with the perception of strong 
economic and commercial barriers. Furthermore, the 
authors underline that small farmers are often less likely to 
use new technologies due to the lack of capital to invest, 
which implies the widening of the digital divide between 
small and large agricultural producers. According to Long 
et al. (2016), there are some important barriers that prevent 
the adoption and spread of technological innovations in 
agriculture. Some common examples are: perceived high 
initial investments, long pay-back periods, switching costs, 
lack of clear regulatory framework, lack of required 
competences/skills. For these reasons, in recent years some 
studies have emerged in which the economic convenience 
in the use of aerial systems, for precision agriculture 
purposes, is assessed. The most relevant are listed below. 
Ristorto et al., (2015) estimate the costs of adopting a 
rotary-wings UAS for crop monitoring tasks in paddy 
fields. They make a comparison between two different 
commercial sensors. Ireland-Otto et al. (2016), with 
reference to a hypothetical farm located in Northeastern 
Kansas (United States), compare the costs of manned aerial 
systems and UASs, which can be used to determine 
whether and where a nitrogen deficiency is occurring 
during corn production. The main result of their analysis is 
that UASs are cheaper. Griffin et al. (2018) discuss the 
profitability of a hypothetical investment in precision 
technology for agriculture, highlighting potential costs and 
benefits. However, their analysis is quite generic because it 
does not refer to a specific equipment. Borgogno Mondino 
and Gajetti, (2017) propose a cost simulating model and 
demonstrate that economic sustainability can be obtained 
only if the skills about remote sensing are internal to the 
company. They also explore the UAV potential market in 
the Italian viticulture landscape.  

Some important considerations can be drawn from our 
literature review. The number of studies specifically 
devoted to the discussion of the economic aspects related 
to the adoption of UAVs for precision agriculture is quite 
limited. In fact, many farmers are not aware about the costs 
related to the use of UAVs for precision farming and this 
is one of the main barriers, for a large-scale adoption of this 
technology. Therefore, our paper aims to: (1) provide a 
preliminary economic analysis about the adoption of two 

alternative aerial platforms by a hypothetical small-medium 
farm in the olive sector, (2) make farmers aware of 
investments and costs under multiple application scenarios, 
also exploring the possibility of becoming service providers 
for other farmers. 

3. A preliminary cost analysis 

We aim to explore the economic feasibility of using a UAV 
for PA. We refer to a hypothetical and small-medium olive 
company, located in the province of Cosenza (Calabria 
Region), in Southern Italy. In recent years, UAV-based 
smart farming has been significantly spreading in the olive 
sector, to achieve various purposes, like estimation of olive 
crown parameters (Diaz-Varela et al., 2015), early disease 
detection (Calderon et al., 2013), estimation of incoming 
solar radiation in a plot of land (Ortega-Farias et al., 2016). 
The olive sector is one of the main sources of revenue in 
the Calabrian territory, also because the olive oil produced 
is in many cases extra-virgin and organic (Guido et al., 
2020). The cultivation of the olive tree in Calabria is very 
fragmented and covers about 186,000 hectares, which are 
distributed among approximately 138,000 farms, with an 
average size of 1.3 ha (Perri et al., 2009). In Italy, the 
activities of the UAVs are regulated by the Italian Civil 
Aviation Authority (Ente Nazionale per l’Aviazione Civile, 
ENAC). As discussed in Section 2, the aspect that most 
distinguishes UAVs from each other, concerns the 
characteristics of the wing. In this paper, we explore two 
alternatives: fixed-wing and rotary-wing. In particular, with 
the aim to avoid any drone-sensor incompatibility, we refer 
to two well-known and commercially popular solutions 
identified in (Mukherjee et al., 2019) and outlined in Table 
1. For both cases the use of the Parrot Sequoia multi-
spectral sensor is assumed, in order to make the 
comparison homogeneous. 

Table 1: Main features of the two explored alternatives 

Name UAV 
type 

Battery 
autonomy 

[min] 

Speed 
[m/s] 

Price 
[€] 

senseFly 
eBee SQ 

F-W 55 1-30 11,000 

DJI M100 R-W 35 1-22 7,500 

3.1 Technical aspects 

The economic assessment of this study depends, above all, 
on the characteristics of the mission to be conducted. In 
this paper, the term “mission” indicates the set of three 
phases represented in Figure 1. The preparation phase 
includes a set of operations preceding flight, like checking 
the condition of the vehicle, positioning the battery, 
planning the flight in terms of path and any stops for 
battery change and/or recharge. The flight phase lasts from 
the first take-off of the UAV to the last landing. Multiple 
take-offs/landings may indeed be necessary if the battery 
autonomy is not sufficient to guarantee the completion of 
the entire flight. Therefore, flight time is the period in 
which the UAV is actually in flight, while idle time takes 
into account the stop(s) due to the battery restrictions. A 
closing phase is also necessary because the UAV must again 
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be checked, and the battery removed. Our estimation about 
the pre-flight time and post-flight time, based on interviews 
with twelve drone pilots, is 25 minutes and 20 minutes, 
respectively. Flight time mainly depends on the path of the 
aerial vehicle.   

 
Figure 1: Mission structure 

In this paper, for simplicity, we suppose to consider a 
rectangular ground, which is not an unusual assumption 
(Borgogno Mondino and Gajetti, 2017; Ristorto et al., 
2015). We assume that the long side (𝑙!) of the rectangle is 
double the short one (𝑙"), while the area is 1.3 ha, which is 
the mean for olive fields in Calabria. 𝐼 is the distance 
between two flight lines.  

In Figure 2, the flight path is shown.   

 

Figure 2: Path flight over the rectangular ground 

The distance 𝐷 travelled by the UAV can be computed by 
using the following formula: 

𝐷	 = &
𝑙!
𝐼 ' (𝑙" + 𝐼) + 𝑙"																																																							(1) 

While 𝑙! and 𝑙" are fixed, since they depend on the size of 
the ground, it is possible to make a decision about 𝐼. The 
choice of 𝐼 is quite critical, because it determines how 
“dense” the path is. Basically, the lower 𝐼 is, the greater the 
overlapping rate of the images acquired; in this case, both 
distance to be travelled and flight time increase. 𝐼 is strongly 
influenced by the flight height (𝑓ℎ). Another important 
choice concerns the time t between two consecutive shots 
(by the spectral sensor), which determines the coverage rate 
of the ground. t is related to 𝑓ℎ and the aerial vehicle speed 
s. Table 2 outlines, for each flight height, the 
recommended 𝐼 and s, according to the user guide of the 
Parrot Sequoia multi-spectral sensor (MicaSense, 2019), in 
order to have an image overlapping and a coverage rate of 
80 % (we set t = 1 second).  We point out that some of 
the values in Table 2 have been obtained by interpolating 
the graphs provided in (MicaSense, 2019).  

Table 2: Recommended 𝑰 and s for each flight height 

𝒇𝒉	[m]	 30 50 70 90 110 

𝑰	[m]  5 10 14 16 20 

𝝈	[m/s] 5 10 13 18 20 

In Figure 3, we show the flight time (in minutes) necessary 
to travel 𝐷 and for take-off and landing, for each pair 
(𝑓ℎ, 𝐼), by varying s (in minutes per second). Observe that 
when 𝜎	 ∈ [23,30], the mission can be carried out only by 
the fixed-wing UAV. On the basis of the technical 
characteristics of the UAVs of the study, take-off speed and 
landing speed have been set to 5 m/s and 4 m/s, 
respectively. If we only refer to the recommended speed for 
each pair (𝑓ℎ, 𝐼), we can extract the flight time marked in 
red. As it can be seen, when referring to very limited land 
sizes such as that considered in this study (i.e., 1.3 ha), the 
strengths of the fixed-wing UAV are not fully exploited. 
The maximum flight time is about 9-10 minutes (at a height 
of 30 meters), hence the battery of the rotary-wing UAV, 
albeit limited, allows to complete the mission. Therefore, 
under the examined conditions, the higher fixed-wing 
UAV’s price does not seem to be adequately justified.  

 
Figure 3: Flight time by varying the flight speed 

3.2 Cost-based considerations 

Below, the costs related to the PA activities are discussed. 
The use of the UAVs in agriculture can have multiple 
purposes: activities such as real-time irrigation management 
or vegetation growth monitoring involve fairly frequent 
aerial surveys, while to make a 3D reconstruction of the 
field or to map grass species, even occasional surveys are 
enough. In order to make our analysis purpose-
independent (i.e. general purpose), we analyze 4 different 
scenarios, in terms of flight frequency: 1 mission/month 
(S1), 1 mission/week (S2), 2 missions/week (S3), 3 
missions/week (S4). We refer to the olive 
growing/harvesting season, which usually lasts from May 
to December.  First of all, the purchase of the UAV must 
be taken into account. In the literature, there is not a single 
commonly shared idea about the length of the useful life of 
a UAV, but the various scholars formulate different 
hypotheses. Basically, it ranges between 2 and 7 years 
(Ristorto et al., 2015; Borgogno Mondino and Gajetti, 2017; 
Doole et al., 2018). Considering that the regulations are 
constantly evolving, we assume that the drone can provide 
utility for 5 years at the end of which it has a residual value 
equal to 5% of the purchase cost. The estimate on the 
residual value is linked to the possibility of reselling the 
drone to reuse it for purposes other than precision 
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agriculture, in fact in the last few years the drone market for 
recreational purposes has had considerable development 
(Liu et al., 2015). According to our estimation on pre-flight 
time, flight time, and post-flight time, we can say that the 
mission time is not greater than one hour, in any case. As 
for the cost of the pilot, we refer to (Xiang et al., 2016), 
where the annual cost was estimated at $ 34,000. Then, if 
the pilot worked full time (22 days per month, 8 hours per 
day), he/she would cost around 14-15 €/h. Therefore, we 
suppose to pay a specialized drone pilot 15 €/mission. The 
cost of the assistant was estimated to be 20% lower (i.e., 12 
€/mission), considering the less responsible tasks to be 
performed. For each mission, an expert must take care of 
processing the collected data through appropriate 
methodologies (e.g., machine learning). The average salary 
for an expert data scientist is around 55,000 €/year in Italy 
(Uva, 2019). Then, if the data scientist worked full time (22 
days per month, 8 hours per day), he/she would cost 
around 26 €/h. We estimate a work of about 2-3 hours to 
process the data of each mission, therefore we suppose to 
pay a data expert 60 €/mission. According to the ENAC 
regulation, maintenance operations include: revision, 
inspection, replacement, modification or correction of 
aircraft defects. For the rotary-wing UAV, we suppose to 
replace for wear: the battery TB47D twice per year (400 
€/year), the motor DJI 3510 (35 €/year) and the 4 
propellers (20 €/year) once per year. For the fixed-wing 
UAV, we suppose to replace the battery Venom 3S twice 
per year (300 €/year). Any extraordinary maintenance work 
is included considering an additional fee equal to 20% of 
the yearly depreciation. According to the ENAC regulation, 
it is not allowed to conduct operations with an UAV, unless 
an insurance concerning liability to third parties has been 
stipulated.  As indicated in (Borgogno Mondino and 
Gajetti, 2017), the yearly insurance fee usually ranges 
between 400 and 1000 €/year. Then, we estimate a yearly 
insurance fee of 900 and 600 €/year, respectively for F-W 
and R-W UAV, then proportionally to their market value. 
In Table 3, a summary of the costs is shown.  

Table 3: Cost summary [€/mission] 

Item S1 S2 S3 S4 

F-W depreciation 261.25 65.31 32.66 21.77 

R-W depreciation 178.13 44.53 22.27 14.84 

Manpower 87.00 

F-W maintenance 90.00 22.50 11.25 7.50 

R-W maintenance 92.50 23.13 11.56 7.71 

F-W insurance 112.50 28.13 14.06 9.38 

R-W insurance 75.00 18.75 9.38 6.25 

F-W total 550.75 202.94 144.97 125.65 

R-W total 432.63 173.41 130.21 115.80 

As expected, the fixed-wing UAV is more expensive than 
the rotary-wing one. However, the limited size of the field 
does not allow to fully exploit neither its greater battery 
endurance nor the highest achievable speed. Moreover, it is 
important to highlight that under each of the 4 scenarios 
considered, the yearly net use of the aerial vehicle, in terms 

of flight time, is extremely limited. This means that a large 
amount of the UAV “production capacity” remains 
unused. For example, under S4 and when 𝑓ℎ = 30 m, the 
annual flight time is approximately 16 hours.  Therefore, 
the agricultural company, object of this study, could sell the 
PA service to its near farmers. In this case, some time 
constraints must be taken into account. First of all, a 
mission can be successfully carried out only during a non-
rainy and non-windy day. According to the technical 
characteristics of the considered UAVs, we have then 
excluded the days with wind higher than 30 km/h. In the 
province of Cosenza, in the last 5 five years (2015-2019), 
the non-rainy and non-windy days were on average 145 in 
the period May-December (source: www.ilmeteo.it). 
Furthermore, a limited number of sunny hours are available 
for each day, then we assume a limit of 4 missions/day, 
considering also the transfer time field-to-field. Therefore, 
not more than 580 missions/year can be carried out, by 
using a single UAV. In Figure 4, we show the trend of the 
cost per mission, by varying the number of customers from 
0 to 10, under the 4 scenarios, and for each type of UAV, 
F-W and R-W. Observe that we consider the average case, 
then also the customers’ field is 1.3 ha. 

 
Figure 4: Cost per mission, by varying the number of 

customers, under the 4 scenarios 

As expected, the trend is decreasing and the incidence of 
the manpower cost (with particular reference to the data 
processing expert) appears very significant. Observe that 
the constraint related to the weather conditions limits the 
number of customers to 8 and 5 for the third and fourth 
scenario, respectively. 

3.3 Wider fields: brief considerations 

With the aim to make our analysis more exhaustive, we 
provide also the flight time necessary for wider fields. In 
Table 4, we show how the flight time varies, by varying the 
field size, for each pair (𝑓ℎ, 𝐼). As it can be noted, when 
the size of the ground increases, the flight time considerably 
grows and additional needs emerge. First of all, one battery 
is not always enough to complete a single mission; this 
means that in the economic analysis, the purchase of more 
batteries should also be considered. Furthermore, the 
characteristics of the fixed-wing UAV are better exploited; 
for example, if a ground of 50 ha must be monitored at a 
flight height of 30 m, 6 and 9 stops are needed to change 
the battery for the F-W and R-W UAV, respectively. 
Therefore, there is a significant difference about the 
production capacity of the two alternatives. In this context, 
it would also be necessary to redefine the number of 
potential customers and the service frequency, taking into 
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account that a UAV should not exceed 200 flight hours per 
year, for safety reasons (Borgogno Mondino and Gajetti, 
2017). 

Table 4: Flight time for each pair (𝒇𝒉, 𝑰), by varying the 
field size 

(𝒇𝒉, 𝑰) Flight time [min] 

[m] 5 
[ha] 

10 
[ha] 

20 
[ha] 

50 
[ha] 

100 
[ha] 

(30,5) 35.22 69.51 137.16 339.91 673.84 

(50,10) 9.67 18.24 35.37 86.50 171.17 

(70,14) 5.80 10.63 20.44 48.27 95.27 

(90,16) 4.15 7.26 13.37 31.43 60.78 

(110,20) 3.34 5.68 10.12 23.21 44.72 

4. Current limitations and future challenges 

The study of the current state of the art and the preliminary 
economic analysis, above conducted, are very useful for 
detecting some current limitations of the UAV technology 
for PA purposes. Substantially, a farmer who wants to 
invest in the purchase of a UAV must face the following 
issues, which characterize the current state of technology: 
training, investment, battery, data processing, regulation, 
maneuverability, sensors and payload. They are briefly 
described in Appendix, at: 
https://drive.google.com/file/d/1YMMtODfoPQyAL4
GNlPYEILY-uAxr1HXd/view?usp=sharing 

Future challenges concern several aspects. First of all, UAV 
technology should become more user-friendly, in order to 
stimulate adoption by farmers (Gago et al., 2015). 
Considering the undoubted benefits of PA, an increase in 
sales of remote sensing devices is expected in the coming 
years; therefore, the costs of aerial platforms and sensors 
will decrease, due to the higher competition among 
manufacturers. However, probably the most important 
challenge is the definition of a standardized and 
harmonized pipeline, which concerns the most important 
operational steps: flight preparation and execution, data 
processing and interpretation. In fact, currently there is no 
a well-defined and recognized workflow for PA 
applications (Tsouros, 2019).  

5. Conclusions 

In this paper, we have presented an overview about the use 
of the unmanned aerial systems for precision agriculture. 
First, we have focused our attention on the different 
alternatives in terms of UAVs and sensors for image 
acquisition. Then, we have presented a preliminary cost 
analysis, with reference to a hypothetical small-medium 
farm, located in the South of Italy, who wants to use a UAV 
in order to exploits the benefits of precision agriculture. 
Our analysis has also taken into account technical and 
regulatory constraints. Currently, the number of studies in 
literature, which analyse the economic potential of UAVs 
for precision agriculture, is quite limited. Therefore, this 
paper aims to fill this gap. Moreover, from a practical point 
of view, this study can be a reference for any farmer who 

wants to apply UAV-based precision farming techniques 
for the first time. In fact, it provides a summary of: current 
state of technology, main limitations and investments to be 
faced. The main result of our analysis is that the purchase 
of a UAV for own use is still quite expensive, especially if 
the field to be monitored is limited in size. The production 
capacity of the UAV can be better exploited if nearby farms 
are also served. We have also detected the current 
technology limitations and the possible future challenges. 
Basically, the benefits of precision farming are not yet clear 
to many farmers, because this technology is still in its 
infancy. Implementations costs are currently high, and 
regulations are constantly evolving, any investment is 
uncertain. Future developments include the use of a drone, 
equipped with visual and spectral sensors to acquire images 
and support the decision-making of a real farm. Field-tests 
will clarify both the technical aspects and the cost items, 
which are only hypothesized and estimated in this study. 
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