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Abstract: Today's manufacturing systems continually evolve as technological advances are developed in communication, 

data analysis and storage, and sensors fields. Indeed, the dramatic changes caused by artificial intelligence, the internet of 

things, cloud and edge computing, simulation, cyber-security, and virtual reality can potentially increase the industrial 

infrastructure's efficiency and flexibility. However, integrating these innovations with traditional approaches used until now 

in manufacturing management poses a challenge. In Operation Management, Overall Equipment Effectiveness (OEE) is the 

most common indicator used to measure and assess the efficiency of a manufacturing system. Therefore, in the present paper, 

a detailed framework is defined to guide the introduction of different technologies characterizing the industry 4.0 paradigm in 

the management and continuous control of OEE. Finally, new opportunities for optimization thus ensued are identified as 

well as limitations and possible drawbacks caused by this transformation. 
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I. INTRODUCTION 

In the past, as the manufacturing industry increasingly 

required more flexibility to achieve higher productivity, 

digitalization gradually consolidated into the production 

system. The main priority of the digitalization process is 

performance improvement through the provision of 

intelligence between devices and applications involved 

in the process. Industry 4.0 (I4.0) revolution has 

emerged as the perfect scenario for fostering this aspect 

in the manufacturing process control even more, thanks 

to the integration of innovative technologies. In this 

environment, the entire process can operate with near-

zero human involvement, and real-time performance 

data can be analysed by algorithms and used for critical 

operational decisions. The main principle behind I4.0 is 

to create a smart manufacturing industry by 

interconnecting machines and devices that can control 

each other throughout the life cycle [1], providing 

sustainable environmental solutions.  

Nevertheless, companies need to focus on the best 

strategy to attract more customers in a highly 

demanding market. Competitive advantage is 

inextricably linked to the capacity for technological 

innovation, and it depends on accurate performance 

monitoring and controlling based on a set of measures 

that focus on the main critical activities, called Key 

Performance Indicators (KPIs). Using KPIs, managers 

can control and guide the company towards 

improvement, making effective decisions. Overall 

Equipment Effectiveness (OEE) is a performance metric 

to assess manufacturing efficiency and identify its major 

impact factors [2]. OEE is also suitable for discrete, 

batch, and continuous production methodology [4] and 

influences strategic decisions for improvements. The 

OEE is computed by multiplying three sub-indicators: 

Availability (A), Performance (P), and Quality rate (Q). 

They are composed of the six major equipment losses: 

equipment failure, set up and adjustment, idling and 

minor stoppages, reduced speed, defects in the process, 

and reduced yield. This paper aims to establish a 

framework to guide the introduction of different 

technologies characterizing the I4.0 paradigm in the 

management and continuous control of OEE. 

II. BACKGROUND 

Over the years, several pieces of research have been 

published concerning the definition of OEE and its 

applications. A study [5] presented a framework 

emphasizing the 5S and the Total Productive 

Maintenance (TPM) as the critical success factors in 

OEE improvement. Another research [6] presented the 

application of the lean tools and six sigma approach to 

improving OEE, such as Single Minutes Exchange Die 

and Pareto Analysis. A macro framework [7] has been 

developed integrating the quality tool such as value 

stream mapping, failure mode effect analysis, and single 

minutes exchange die in OEE improvement, reducing 

nonvalue added process in operation and improving 

equipment utilization. Furthermore, several studies have 

been conducted on the relation between I4.0 and Lean 

Manufacturing (LM). A study [8] presented a 

continuous improvement framework that includes a 
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wireless device system to support the real-time 

equipment performance measures through the 

integration of Information Technology (IT) and LM. A 

study in 2017 [9] proposed two indicators that aimed to 

assess the benefit of I4.0 technologies to LM tools, such 

as the TPM, confirming that their implementation can 

positively impact OEE. In this respect, another study 

[10] established an approach of structured guidelines 

and steps for OEE improvement implementation. A 

research work [11] proposes four Design Principles for 

the I4.0 Smart Factory component. Another study [12] 

presented a new operating paradigm in the 

pharmaceutical industry, including digitization, 

automation, and integrated online and real-time data. 

Despite expansive research activity aimed at defining 

OEE and its applications, the current scientific literature 

still lacks a proper and comprehensive analysis of the 

integration and the impact of I4.0 Enabling 

Technologies (ET) on manufacturing performance 

management and control. Therefore, the following 

section presents an integrated framework to analyse and 

optimize the introduction of I4.0 technologies in the 

assessment and optimization of OEE. 

III. FRAMEWORK PROPOSAL 

The focused knowledge of the adjustments required by 

the manufacturing process to get better results is the 

ideal method for determining an improvement 

framework. Therefore, the successful implementation of 

novel technology is dependent on the development of 

well-designed systems that consider how the 

intervention would optimize the process. The Design 

Principles (DP) presented in the aforementioned study 

[11] can aid in the selection of the I4.0 ET required for 

OEE improvement. These principles are as follows: 

real-time capability (the ability to collect and analyse 

data in real-time, allowing for immediate decision 

making); interoperability (the ability of objects, 

machines, and people to communicate, exchange data, 

and coordinate activities); virtualization (the ability to 

create a virtualized view of operations and evaluate 

change impact); and decentralization (the business logic 

contained in sub-systems or components rather than a 

central computer system, enabling autonomous decision 

making). Because the losses underlying each OEE 

component are often dependent on shared systems, 

starting the analysis from their definition may be 

misleading because it could be unable to notice the 

increase in each OEE component brought by the I4.0 ET 

implementation. A list of OEE calculation activities is 

then proposed to establish the actual and defined bounds 

of the process. The proposed framework is depicted by 

four steps, including a preliminary risk analysis phase 

that is typically undertaken prior to project 

implementation. The first step concerns the analysis of 

the relationship between I4.0 DP and the OEE 

operations, which are classified as measurement, 

calculation, and optimization. Proactive participation of 

the process expert is highly suggested to identify the 

appropriate set of process modifications. Similarly, the 

second step entails analysing the selected I4.0 ET and 

their characteristics in terms of I4.0 DP, including the 

advantages and criticality of each proposed I4.0 ET. The 

framework scheme and the first and the second steps are 

reported in Appendix A. It is noteworthy that users 

might choose from a wider range of I4.0 ET based on 

the industry in which the process operates, giving the 

framework more flexibility. The third step is to 

investigate the intercorrelation between OEE activities 

and the I4.0 ET. Furthermore, an indicator Ij,k,z is 

calculated to assess the influence of each ET group on 

OEE activities: 

 

where j, k, z, are discrete indexes respectively referring 

to the DP, the OEE activities grouped by stage and the 

ET grouped by classification. The terms DPSj,k and 

DPTj,z  represent the correlation between DP and OEE 

activities and ET respectively, assuming binary values 

between 0 and 1. The term NTk represents the total OEE 

activities per stage. In the last step, the calculated 

indicator values populate a table in which the I4.0 ET 

groups are sorted according to their impact on the OEE 

improvement (Fig.1). 

 

Fig. 1. Impact of I4.0 Enabling Technologies on OEE Activities 

IV. DISCUSSION 

This section aims to propose the analysis of the selected 

I4.0 ET, performed in the second step, useful to describe 

the advantages and critical factors to be considered in a 

preliminary analysis risk phase before the efficient 

introduction into the process. As results of the 

framework application, data capturing, processing, 

network and communication technologies highly impact 

the OEE calculation activities, while physical and 

digital interface technologies depend on the process and 

industry in which improvement are applied and could 

positively impact the OEE indicator.  

Supportive information can be extracted utilizing Big 

Data Analytics, and preventive actions can be ensured 

from improved predictive maintenance thanks to the 
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high amount of available real-time data, such as 

machine vibration, energy consumption, electric 

currents, and temperatures. Maintenance engineers can 

properly schedule interventions based on these data to 

avoid any unexpected machine downtime. Furthermore, 

I4.0 network technologies offer a large set of robust 

solutions to increase the Quality of Service (QoS) and 

avoid hacking of IT infrastructures. Radio Frequency 

Identification (RFID) technologies are the major 

components for real-time data management in 

traceability and reaction to system changes. Defect 

losses can be managed with an increased amount of 

stable real-time data. When properly elaborated, alerts 

on defective parts should be sent immediately to 

operators. Connected Collaborative Robots (Cobots), 

Cloud Systems, and Artificial Intelligence (AI) plays an 

essential role in the adaptation to changing requirements 

to satisfy system stability and agility [11]. 

Interoperability of communicative components could be 

satisfied using Cyber-Physical System (CPS) and 

Industrial Internet of Things (IIoT) adaptation such as 

Networking technologies. Moreover, simulation 

modeling and virtualization techniques such as 

Augmented Reality (AR) and Virtual Reality (VR) can 

be provided by monitoring the changes in the existing 

system.  

A. Data capturing and processing technologies 

Continuous process improvement often requires 

collecting detailed information on the entire 

manufacturing cycle. The high amount of data collected 

from sources needs to be analysed and controlled to 

extract interesting and feasible information. Data 

analysis techniques have been developed in the last 

years, including Data Mining, Machine Learning (ML), 

and AI. Big Data Analytics techniques are used to 

recognize and eliminate non-essential data to maximize 

predictability, explore new possibilities, improve 

production efficiency, and help reduce overhead costs 

[13]. One of the foremost challenges concerning Big 

Data is identifying the valuable insights gained from it 

and their linkage with the value chain. Since innovative 

communications protocols like 5G and 6G will increase 

the amount of available information, the issues related 

to their physical storing in data centres and the database 

management complexity. Streaming and status data 

needs different management strategy. Streaming data is 

transmitted in large volumes and requires front-end pre-

processing to send only valuable information to the 

back-end system. Status data can flow continuously due 

to their small volume, including simple information like 

on/off, failure/steady-state, or run status. Data capturing 

and processing technologies can improve the 

performance of this information flow. 

Nevertheless, continuous uptime cannot be guaranteed 

in production lines without reliable redundancy and 

safety protocols in the communications network. The 

high availability of Big Data and the increase in 

computation power opens new possibilities for human-

machine interfaces based on AI applications, enabling, 

for example, surveillance robots and running improved 

methods such as neural networks faster and more cost-

effectively. AI also involves the integration of digital 

data and computational analysis to make decisions 

usually made by humans, involving reasoning, problem-

solving, learning, and decision-making, among others 

[14]. 

As reported in the study [12], the application of AI in 

pharmaceutical manufacturing has already begun, 

including the use of machine vision technology to 

replace human visual inspection of packaging, caps, and 

vials. New predictive equipment maintenance to reduce 

disturbances, risks, production downtime, and 

automated quality control enables seamless analytical 

testing scheduling, continuous process quality 

assurance, and enhanced data integrity. Within the field 

of AI, ML and Artificial Neural Networks (ANN) have 

emerged as two of the more advanced methods for 

prediction and risk management. The supervised 

learning approaches ANN have seen steady progress in 

advanced manufacturing applications for prediction and 

control in pharmaceutical industry development, control 

schemes, and fault detection for complex dynamic 

processes. As AI is increasingly used in widely 

available products and services, the question of its 

damage potential has been raised. The research [15] 

suggests analysing and judging potential risks related to 

the level of criticality starting from the assessment of 

two aspects: a possible occurrence of damage caused by 

human beings and algorithm-terminated systems and its 

extent in terms of the right to privacy, the fundamental 

right to life and physical integrity and non-

discrimination, as well as potential damage for the 

economy of societies and countries in terms of heavy 

dependence on a single AI solution or provider.  

The identification, location detection, and condition 

monitoring of objects and resources can be supported by 

RFID technologies, which enable the aggregation and 

processing of the real-time data gathered from 

production processes. As a relatively new technology to 

widespread, large-scale manufacturing applications, 

RFID technology has potential issues that need to be 

considered, including the high expense since RFID 

implementations include the tags themselves in addition 

to readers, critical back-end systems, specialized 

personnel, issues related to security and privacy of the 

tagged object [16]. The interconnected sensor-cloud 

systems based on the IIoT can deal with a faster and 

more considerable amount of real-time data from the 

high potentiality of the fast network. The original 

Internet of Things is adapted to utilize specific industrial 

applications ranging from optimization of production 

lines to monitoring in-process environment and real-

time data analysis [17]. IIoT also provides surveillance, 

hazard monitoring, and smart grid applications, essential 

for preventive measures and safety. However, IIoT can 

bring some associated risks related to privacy, security, 

and loss of data integrity [18]. Simulation is a valuable 

technology for developing models for assessing risks 
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and barriers to implementing process adjustments by 

analysing their effect on performance within a specific 

scenario, including dynamic scheduling and planning 

due to the high-demanding and customized market [19]. 

According to this technology, the CPS consists of an 

embedded computer and networks that monitor and 

control the physical processes, assisted by several IIoT 

devices connected by high-speed networks. The 

development of IIoT has improved the integration of the 

sensor-cloud system with intelligent communication 

methods, like control systems and equipment. As CPS is 

an integration of physical and cyber components, 

industries have begun creating socio-cyber physical 

work systems [20], which aim to improve the security 

and industrial output and improve the collaboration of 

workers with the systems [21]. The simulation enables 

predictive and cost-effective manufacturing 

technologies like the Digital Twin (DT). While 

simulation depends on mathematical models, the DT is 

a digital replica of a physical process, such as an 

operation, machine, or activity, and depends on actual 

data from physical parts of the process. DT can be based 

on real-time data integrated with simulations to provide 

high-resolution models and verify process performance. 

The real-time mapping of the physical object, through 

IIoT devices, allows to analyze, monitor the digital 

version, and prevent the problems before they occur in 

the real world. The continuous involvement and 

interaction of the DT can increase productivity, ensure 

stability, accuracy, and quality [22], and positively 

impact the OEE indicator. The IIoT implementation has 

allowed the DT to spread out in the industry because of 

its cost-effective, dependable, and accessible technology 

[4]. The rapid advancement of AI, ML, and Big Data 

Analytics has enabled DT to reduce maintenance costs 

and improve overall performance [23]. However, in 

industrial practice, the development of Big Data 

analytics is usually conducted by data scientists with 

data engineering expertise in statistics and machine 

learning, which need to effectively work with 

maintenance technicians, complementing each other 

with their expertise [24]. 

B. Network and communication technologies 

The 5G network paradigm implementation has enabled 

the deployment of local mobile networks, eliminating 

the requirement of dedicated and vendor-specific 

hardware equipment [25]. Hence, the Private Mobile 

Network has been deployed to deliver localized and use 

case-specific network services so as Local 5G Operators 

can be used in I4.0 applications, even though regulation 

and management should be studied further for cost-

efficient implementation [26]. Furthermore, the 

upcoming 6G network paradigm will offer significantly 

more value-added services to cover more extensive 

bandwidth requirements, making it possible to deliver 

ultra-high data rates, ultra-low latency, ultra-high 

reliability, high energy efficiency, traffic capacity, and 

support high-quality services [27]. Moreover, improved 

communication such as Machine-to-Machine/Man and 

Device-to-Device can give high reliability to the total 

process control [28] and aid the large-scale 

interconnection of several machines, reducing network 

levels. Nevertheless, many factors in terms of safety and 

availability of the communication lines need to be 

considered during risk assessment and the occurrence of 

redundant lines to guarantee a high QoS. Network 

Slicing enables multiple virtualized networks on top of a 

single physical network infrastructure, setting an 

interface between the virtualized world and 

heterogeneous networks in a self-organized, flexible, 

and optimal way. However, technical aspects need to be 

investigated for the practical IIoT realization via NS by 

improving network scalability, dynamicity, security, 

privacy, and QoS [29].  

Edge Computing (EC) has been introduced to overcome 

this limitation and help reduce the network's load and 

latency, speeding up services and response times 

compared to a primary or cloud-based processing 

method. EC brings the computation and data storage 

capabilities closer to the client location and improves 

response time, bandwidth, and network capabilities. 

This technology can also increase security by 

eliminating the sharing of specific data over a network, 

also performing valuable operations such as data 

processing, cache coherency, computing offloading, 

transferring, and delivering requests [30]. The evolution 

of EC is Fog Computing, a decentralized computing 

infrastructure in which data, computing, storage, and 

applications are located between the data source and the 

cloud, reducing latency between the industrial network 

and the components. All these technologies have in 

common the need to ensure the safety of the data. Cyber 

Security is the application of technologies, processes, 

and controls to protect systems, networks, programs, 

devices, and data from cyber-attacks. It aims to reduce 

cyber-attack risk and protect against unauthorized 

exploitation of systems, networks, and technologies. A 

research [31] proposed six layers of Cyber Security, 

considered as the barriers through which hackers may 

gain access to an Industrial Control System, where the 

first line of defense is the Network Firewall against 

hackers, viruses, and malware. 

In contrast, the outermost layer is Business Continuity 

and Disaster Recovery, which necessitates spotting 

potential and preparing a continuity and recovery plan. 

Between the layers is developed the Data Encryption, 

which uses passwords or digital locks to secure the 

systems and data. Longer and more complex passwords 

ensure more robust encryption and a lesser chance of 

hackers breaking into the systems. In this layer, 

Blockchain technology is used to record data in a digital 

form using cryptographic methods to make them less 

susceptible to hacks, leaks, or precarious access [32]. 

The potential of Blockchain in IIoT is quite promising 

but also faces technological, security, and privacy-based 

challenges that need to be developed [33].  

C. Physical/digital interface technologies 

A vital contribution also comes from technologies 

directly involved in the real world as an interface for the 
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digital one. Augmented Virtual Reality (VR/AR) is a 

promising technology characterized as a facet that 

enriches the real world with virtual objects generated on 

a computer. These objects look like they exist in a 

similar location to the real world and are effectively 

used for robotics, repair and maintenance, and 

manufacturing applications [34]. VR/AR content 

creation may require infrastructure redesign and unique 

knowledge of domains such as interface design, 

modelling in 3D, fiducial marker, spatial tracking, and 

programming [35]. VR/AR ensures higher levels of 

awareness on the shop floor and speedy symmetrical 

information distribution due to enhanced technologies 

for communication like the 5G networks [36]. To 

enhance the abilities to recognize safety risks accurately 

and promptly, AR has been studied and applied in the 

construction process of inspection, and supervision, as 

reported in the study [37], identifying five trends of 

future development related to safety issues and 

ergonomics which could make an optimal combination 

to improve the future safety management in the 

construction industry. Another emerging technology is 

eXtended Reality (XR), which improves human-

machine interactions by combining virtual and physical 

worlds [38]. XR is a term that encapsulates Augmented 

Reality, Virtual Reality, and Mixed Reality (MR) [39]. 

While AR integrates virtual and real objects in a real-

time display, VR allows users to control and navigate 

their movements in a stimulated real or imagined world. 

XR has been used in related applications such as remote 

assistance, assembly-line monitoring, and maintenance. 

A study [40] reports that consumers’ decisions 

regarding XR adoption hinge on the technology and 

other factors. Indeed, the impact of immersion and 

presence on XR adoption is not straightforward since 

their relationships are mediated by other variables, such 

as perceived usefulness, enjoyment, flow, and 

embodiment. Future research should therefore 

disentangle these underlying dimensions and deepen the 

analysis of their influence.  

The Collaborative Robots (Cobots) are another 

disruptive technology in physical/digital interfacing. 

They are robots acting in collaboration through one or 

more integrated software programs and are often used 

for increasing the production output and efficiency of 

processes. Repetitive and monotonous tasks will be 

assigned to the robots and the humans' critical and 

cognitive thinking tasks. A research [41] was conducted 

using marker-based and marker-less AR technologies to 

develop an intuitive method for robotic manipulator 

teaching. In another research [42], AR for human-robot 

collaborative manufacturing was introduced to enable 

an AR-centred instruction system, planning and re-

planning of the task sequence, monitoring of workers, 

and industrial robot control integrating technologies like 

IIoT and Cloud-based systems. [43]. Nevertheless, the 

ability of Cobots to share activities with humans still 

presents several limitations in guaranteeing safety. A 

virtual or physical safety cage can be introduced to 

allow the operator to interact naturally and intuitively 

with either Industrial or Cobots [44]. Specific issues 

concerning the co-working of humans and robots must 

still be considered. For instance, the fear of losing jobs 

among humans must be dealt with and eventually 

compensated, as well as the ethical problems associated 

with ergonomics, regulatory issues, and psychological 

concerns to make humans adopt a new way of working. 

Furthermore, robot programming is a time-consuming 

and detailed task that requires highly skilled personnel 

and control schemes to develop faster programming 

techniques and safer ecosystems for I4.0 [45]. 

V. CONCLUSION 

A highly efficient process will result from the targeted 

deployment of I4.0 ET, speeding up the entire process 

and improving quality control. By applying predictive 

solutions based on supervised algorithms, I4.0 ET may 

assist in boosting equipment availability and image 

processing can have an influence on quality through 

deep and machine learning. Cutting setup and cycle 

times might result in a considerable improvement in 

performance metrics. However, technical integration 

problems and a lack of industry precedent are the key 

barriers to the deployment of I4.0 ET. Manufacturers 

and regulators will need to make cultural changes and 

innovate in order to handle all the inherent risks and 

knowledge gaps for the successful transition to a Smart 

Factory. In this respect, the proposed conceptual 

approach provides a basic method for successfully 

adopting I4.0 ET in the industrial sector, highlighting 

the real benefits brought to the business by increasing 

OEE value. Future pilot projects will test the proposed 

approach, and the impact on OEE improvement will be 

evaluated. 
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Fig. 2. Framework proposal for the OEE improvement 

 

Fig. 3. Correlation between I4.0 Design Principles and OEE calculation activities 

 

Fig. 4. Correlation between I4.0 Design Principles and I4.0 Enabling Technologies

  


