
XXIX SUMMER SCHOOL “Francesco Turco” – Industrial Systems Engineering

A Conceptual Model for Integrating Agile Practices into
Systems Engineering Management

Ottaviani F.M.*, Zenezini G.*, Rebuglio M.*, Narbaev, T.*,
De Marco, A.*

* Dipartimento di Ingegneria Gestionale e della Produzione Industriale, Politecnico di Torino, Corso Duca degli
Abruzzi, 24 10129 – Torino – Italy (filippo.ottaviani@polito.it, giovanni.zenezini@polito.it,

massimo.rebugli@polito.it, timur.narbaev@polito.it, alberto.demarco@polito.it)

Abstract: Current technological advancements and escalating complexity in Systems Engineering (SE) are driving
systems shift from pre-specified to evolutionary life cycle models. While Agile principles align with this shift, many
SE projects are subject to technological and management constraints that limit the implementation of Agile
principles. Existing literature does not provide standard integration models in dependencies- and regulatory
restrictions-intensive systems. This study provides a conceptual model for integrating Agile practices into SE
projects. The model, defined using the Unified Modeling Language (UML) class diagram notation, encompasses SE
and Agile Project Management (PM) classes along with their attributes, methods, and relationships. The model
provides operation-level support, including requirements engineering, dependency modeling, concurrent features
development, progress monitoring, and quality management. Beyond serving as a roadmap for managing Agile SE
projects, the model lays the groundwork for developing dedicated Agile SE management applications. The proposed
model can enhance Agile SE management practices, increasing the chances of successful SE projects.

Keywords: Systems Engineering, Project Management, Agile Development, Conceptual Modeling

1. Introduction

Systems engineering (SE) requires equal focus on
management and technical expertise. From the customer’s
perspective, the value of a system depends on technical
factors and economic factors, including the cost
associated with the system life cycle (LC) (Blanchard,
2004). Consequently, projects must deliver the intended
results while meeting cost and time constraints.

Rapid technological advances are driving major changes in
SE, increasing its complexity. In response, Agile SE has
emerged as a solution to address this need for resilience.
The approach adapts agile principles to SE, emphasizing
architectures that enable structural and functional changes,
regardless of whether the focus is on the development
process or the final product (Dove & LaBarge, 2014b).

For SE to be Agile, it must satisfy two conditions:
resolving technical uncertainties before system release
(Haberfellner & de Weck, 2005) and adapting
management processes in parallel (Bonnet et al., 2015).
This adaptation involves aligning business objectives with
agile principles, empowering teams and individuals to
make decisions and embrace change, implementing
flexible, responsive workflows, and utilizing tools and
infrastructure that promote agility (Ebert & Kirschke-
Biller, 2021).

While Agile SE offers significant potential benefits, its
implementation may not be straightforward. Agile
approaches in SE extend across the entire system LC,
impacting all organizational aspects beyond just the

definition and development phases. For success, this
comprehensive approach necessitates LC management
methods and tools that align with Agile principles.
Specifically, requirements engineering, modeling,
traceability, verification, and continuous build and
deployment.

In addition, constraints can hinder the adoption of agile
practices. Contractual obligations and task dependencies
can limit flexibility and make it difficult to respond quickly
to evolving requirements. Successful Agile SE
implementation therefore depends on understanding how
to adapt to rapid and frequent scope changes throughout
a project. This also requires transforming traditional
management processes (i.e., planning, monitoring,
controlling, and risk management) to align with agile
principles.

Scrum is a widely used framework for Agile SE (Dingsøyr
et al., 2012). The framework aligns with evolutionary,
sequential system LC models. However, it is essential to
note that Scrum’s focus on process does not directly
address the infrastructure process management, which is
essential for maintaining agility within the process
architecture. On the product side, Scrum’s roots in
software development present certain limitations.
Traditional software development leverages Object-
Oriented Programming (OOP), which inherently
promotes modularity and flexibility, aiding system
adaptability (Dove & LaBarge, 2014a).

Implementing Agile methodologies in complex systems
requires a surrogate model that can be rapidly modified

XXIX SUMMER SCHOOL “Francesco Turco” – Industrial Systems Engineering

and serves as a continuous verification tool to facilitate
Agile processes (Bott & Mesmer, 2020). Evaluation may
lead to adopting an incremental and iterative development
approach for complex systems with evolving
requirements. This incremental development method is
enabled using an open system architecture like Model-
Based Systems Engineering (MBSE). Models ensure
consistency between system and software requirements,
enabling seamless progression into the design and
validation stages (Ebert & Kirschke-Biller, 2021).
Research focused on Agile SE remains relatively limited
compared to other areas within SE. Many existing studies
concentrate solely on Agile SE or Agile Project
Management (PM), without adequately bridging these
disciplines' gaps. While frameworks like ASELCM (Dove,
2017; Dove & Schindel, 2019; Hause, 2023; Schindel &
Dove, 2016) seek to integrate Agile SE with Scrum and
MBSE, they often operate at a high level. This focus on
the entire system LC often neglects the execution phase.

This study aims to shed light on the practical
implementation of Agile SE practices. To achieve this, the
study provides a conceptual model as a class diagram. This
diagram outlines the structure and relationships between
the classes derived from Agile SE and PM. The model
allows just-in-time baselining of system requirements,
dependency modeling, performance monitoring, and
quality management.

This paper begins with an introduction outlining the
background, identified theoretical gaps, and the study's
primary objective. It proceeds with a review of relevant
literature within the field. The methodology section
describes the development of the proposed conceptual
model. The discussion section analyzes the theoretical and
practical contributions derived from the study and
acknowledges the model's limitations. Finally, the paper
concludes by outlining the general limitations of the
research and suggesting directions for future
investigations.

2. Literature Review

2.1 Agile Development and Systems Engineering

SE literature defines agile systems as those capable of
thriving under unpredictable, uncertain, and changing
conditions (INCOSE, 2015). These systems can
reconfigure goals, requirements, plans, assets, and
products. They also empower individuals (engineers,
designers, customers) as “product owners” (Forsberg,
Kevin and Mooz, Hal and Cotterman, 2005). These
definitions align with the Agile Manifesto for Software
Development (Martin Fowler & Highsmith, 2001), which
proposed PM principles advocating a shift away from the
waterfall model.

To effectively respond to uncertainty, Agile SE must
incorporate non-traditional development approaches.
Unsurprisingly, Agile SE and Agile PM share common
traits: Agile SE flexibly adapts to shifting demands and
technical requirements. At the same time, Agile PM

rapidly responds to new information arising during
development (Haberfellner & de Weck, 2005).

As previously mentioned, much of the literature focuses
on either comparing Agile PM and SE, treating them as
distinct approaches, or devising optimal Agile
implementation strategies within SE (Darrin & Devereux,
2017). Haberfellner & de Weck (2005) classify this latter
approach as “agile systems–engineering,” contrasting it
with “agile–system engineering,” which focuses on
embedding agility within the systems themselves. In this
study, we argue that Agile PM can facilitate the
development of agile systems.

Several handbooks and standards guide Agile PM
applications. Scrum, developed by Jeff Sutherland, John
Scumniotales, and Jeff McKennainin in 1993, is widely
adopted due to its adaptability to hardware, full LC, small
systems (Kanavouras et al., 2022). Extreme programming
(XP) often complements Scrum to enhance effectiveness
(Rahman et al., 2022). Frameworks like ASELCM position
Scrum within a broader context (Schindel & Dove, 2016).
Another notable Agile PM approach is SAFe®, created by
Dean Leffingwell, a knowledge base of proven, integrated
principles, practices, and competencies for achieving
business agility using Lean, Agile, and DevOps.

However, most Agile PM methods lack explicit guidance
on the active infrastructure process management needed
to sustain process architecture agility (Dove, 2014). Some
attempts to bridge this gap include Wolff et al. (2021),
who proposed integrating BizDevOps and scenario
methods into Agile PM frameworks, particularly SAFe®.
Rosser et al. (2014) presented an Agile SE framework
aligned with SAFe®’s iterative development and backlog
management. Dove et al. (2018) and Dove (2018)
explored adapting and applying SAFe® within Agile SE,
using features and epics for hardware-firmware integration
(Dove et al., 2018), and examining hybrid Scrum-SAFe®
approaches (Dove, 2018).

Theoretically, agile development principles provide a
framework for cross-functional collaboration between
systems and software engineers in hardware and software
projects (Marbach et al., 2015). Agile SE should flexibly
select and adapt appropriate agile methods based on
experience rather than rigidly adhering to complex process
models (Ebert & Kirschke-Biller, 2021). Specifically, for
systems with life-or-death components, SCRUM and XP
methods may be preferable to SAFe® (Rahman et al.,
2022). Agile PM practices benefit Agile SE by addressing
how agile teams often overlook the increasing complexity
and dependencies within a system as they focus on
incremental implementation (Ebert & Kirschke-Biller,
2021).

2.2 Project Management Conceptual Models

Using conceptual models is not new to scientific literature.
Methods like data flow diagrams, entity-relationship
diagrams, and object-oriented modeling provide standard
architectures for organizations of various sizes and
industries.

XXIX SUMMER SCHOOL “Francesco Turco” – Industrial Systems Engineering

Raimond (1987) and Björk (1992) demonstrated the value
of conceptual data modeling for representing information
within PM systems. This approach models the structure of
project data, including products, processes, resources, and
more. They highlighted the potential of conceptual
modeling over traditional methods. Building upon this,
Luiten et al. (1993) proposed standard models consisting
of a data model, a domain model (for expressing project
concepts), and a project model to store relevant project
data.

Several studies focused on developing reference models
for PM, addressing core functions like cost, time, scope,
and quality management. Karim & Adeli (1999) and
Fadillah & Fitriana (2019) employed object-oriented
programming to create PM information models
encompassing various PM classes. Yeganegi & Safaeian
(2012) emphasized the importance of mapping
stakeholder influence within the model. Ottaviani et al.
(2023) proposed an extensive conceptual model for
standardizing PM, serving as a foundation for building
PM information system software and databases.

2.3 Summary

Table 1 provides a summary of the aforementioned
studies. The Topic columns indicate whether the study
addressed SE, Agile PM, or traditional PM. The Level
column indicates whether the study contribution is at the
conceptual, procedural, or operative level.

Table 1: References studies topics addressed and level

 Topic

Study SE Agile
PM PM Level

Raimond (1987) 🗸🗸 Operative

Björk (1992) 🗸🗸 Operative

Luiten et al. (1993) 🗸🗸 Operative

Karim & Adeli
(1999) 🗸🗸 Conceptual

Haberfellner & de
Weck (2005) 🗸🗸 Conceptual

Dingsøyr et al.
(2012) 🗸🗸 -

Yeganegi & Safaeian
(2012) 🗸🗸 Conceptual

Dove (2014) 🗸🗸 🗸🗸 Conceptual

Rosser et al. (2014) 🗸🗸 🗸🗸 Conceptual

Dove & LaBarge
(2014a) 🗸🗸 Conceptual

Dove & LaBarge
(2014b) 🗸🗸 🗸🗸 Operative

Marbach et al.
(2015) 🗸🗸 🗸🗸 Operative

Schindel & Dove
(2016) 🗸🗸 🗸🗸 Procedural

Darrin & Devereux
(2017) 🗸🗸 🗸🗸 Procedural

Dove (2017) 🗸🗸 🗸🗸 Operative

Dove (2018) 🗸🗸 🗸🗸 Operative

Dove et al. (2018) 🗸🗸 🗸🗸 Operative

Dove & Schindel
(2019) 🗸🗸 🗸🗸 Conceptual

Fadillah & Fitriana
(2019) 🗸🗸 Conceptual

Bott & Mesmer
(2020) 🗸🗸 🗸🗸 Conceptual

Wolff et al. (2021) 🗸🗸 -

Ebert & Kirschke-
Biller (2021) 🗸🗸 Conceptual

Rahman et al. (2022) 🗸🗸 🗸🗸 -

Kanavouras et al.
(2022) 🗸🗸 🗸🗸 Conceptual

Hause (2023) 🗸🗸 🗸🗸 Conceptual

Ottaviani et al.
(2023) 🗸🗸 Operative

This study 🗸🗸 🗸🗸 🗸🗸 Operative

3. Methodology

3.1 Notation

This study presents a conceptual model of the Agile SE
management approach utilizing the Unified Modeling
Language (UML) class diagram notation. UML, as a
widely used visual modeling language, provides a
standardized framework for representing the design of a
system, facilitating the visualization of its core
components and their interactions. The diagram depicts
the system's essential components, including classes, their
attributes, methods, and relationships between them.

In UML class diagrams, classes serve as blueprints for
objects, encapsulating both state (attributes) and behavior
(operations). Attributes are defined by their corresponding
data types. Solid lines illustrate associations between
classes, with numerical indicators at the ends denoting
cardinality (e.g., one-to-one, one-to-many). Solid lines
terminating in a diamond shape indicate a composition
relationship, where the existence of a child class is strictly
dependent on its parent class. Arrows denote inheritance
relationships, illustrating the specialization of a class from
a more generic class.

3.2 Model

Figure 1 presents the proposed conceptual integration
model. Color-coding distinguishes classes related to SE
(blue), Agile PM (red), traditional PM (gray), and those

XXIX SUMMER SCHOOL “Francesco Turco” – Industrial Systems Engineering

that bridge disciplines (purple). The physical data model
emphasizes management objects. This focus streamlines
the process, shortening requirements engineering
processes, thus reducing complexity. Each project (Project)
involves stakeholders (Stakeholder), which are distinguished
by their role (Role) – customer, contractor, subcontractor,
or supplier. Each stakeholder articulates needs (Need),
which form the basis for system requirements
(Requirement), as per ISO/IEC/IEEE 29148:2018 and
SEBoK (INCOSE et al., 2023). Requirements are
distinguished based on their type (Type) – functional,
quality, or constraints.

Features (Feature) address requirements and are associated
to specific elements (Element) of subsystems within the
system of interest (System), as per ISO/IEC/IEEE
15288:2023 and ISO/IEC 26702:2007. Features are listed
in the product backlog (ProductBacklog), and their priority is
determined through the udPriority() method. Once
completed, features are made available through releases
(Release). We assume that releases take place at the planned
date (planDate) due to contractual obligations, while
features completed and made available can vary.

Feature development occurs through user stories
(UserStory). Stories may precede or succeed other user
stories. Stories are committed during an iteration and are
prioritized within the iteration backlog (IterationBacklog)
through the udPriority() method.

Figure 1: Agile SE and PM integration class diagram

Stories have associated criteria (Criterion), which type
(CriterionType) is either Readiness or Acceptance. Readiness
criteria determine whether a story can be added to the
IterationBacklog, whereas Acceptance criteria determine
whether it can be marked as done – udDone(). The udMet()
method within the association class CriterionMet
determines whether a criterion is met.

The cost of the resources employed (ResourceCost) depends
on the feature, calculated through the udAC() method. At
the project level, the project's actual cost is determined by
summing the features' actual cost through the udAC(),
inherited through the release objects.

4. Discussion

This paper presents a theoretical model for integrating
Agile SE, Agile PM, and PM. The model focuses on the
feature class, linking system requirements (SE) to projects
(PM) and stories (Agile PM). Compared to previous
studies, the model provides operational-level support
following a simplified approach to SE and Agile SE
practices. While Agile SE classes align with traditional SE
practices, their dynamic connection to features through
releases implies iterative development, implementation,
verification, and validation in response to changing
stakeholder needs. The Agile PM classes draw inspiration
from Scrum and XP (release and iteration plans), focusing
on quality management through readiness and acceptance
criteria. Acceptance criteria ultimately determine user
story completion.

The model provides a simple visual aid for understanding
how the two domains of Agile SE and PM are connected.
Both disciplines remain unchanged, except for omitting
the “epic” concept to avoid redundancy. This decision
reflects the discordant definitions of “epic” in literature:
Agile SE studies view it as a collection of features. In
contrast, Agile PM studies consider it a larger story.
Additionally, the model establishes a fixed process for
creating user stories directly linked to stakeholder
personas. Finally, the model assumes features are atomic
(without precedence relationships), while stories (not
visible to the customer/client) can incorporate precedence
constraints managed through prioritization in the iteration
backlog.

The proposed model clarifies the logical architecture
connecting SE, Agile PM, and PM components. It also
lays the foundation for developing software tools to
facilitate agile management within Agile SE projects. The
model supports progress monitoring by tracking
completed story points at the user story, feature, and
project levels. Moreover, its transparency and simplicity
allow easy integration into existing management
applications.

This model, like any conceptual model, has inherent
limitations. Conceptual models offer simplified
representations of reality and cannot be fully exhaustive.
Additional classes, relationships, or methods may be
required for specific implementations. A potential gap
exists between the model and the actual system; careful
management is necessary to bridge this gap. Moreover,
advanced functions like stakeholder management,

XXIX SUMMER SCHOOL “Francesco Turco” – Industrial Systems Engineering

dynamic risk management, or prescriptive decision
support tools may necessitate modifications or extensions
to this model.

5. Conclusions

In SE, systems life-cycle models are shifting from
prescriptive or sequential models to concurrent and
adaptable approaches. To fully realize Agile SE,
management of SLCM phases must also embrace agile
principles. However, integrating these approaches can be
complex, requiring tailored Agile practices for optimal fit
within Agile SE. While the literature supports the
feasibility of this integration through theoretical
discussions and case studies, it lacks a clear and concise
operational model. This study addresses this gap by
proposing a conceptual integration model for Agile SE
and PM. The model clarifies SE management components
by defining classes with attributes and methods and their
interactions.

This study acknowledges additional limitations beyond
those inherent to the methodological approach. Firstly,
the analyzed literature drove the modeling choices and
aimed for maximum simplification. While capturing every
possible configuration would contradict the goal of
minimizing process complexity, the model's purpose
extends beyond universality. Its primary objective is to
highlight the operational relationships between Agile SE,
Agile PM, and quality, risk, and monitoring management.
When applied to real-world scenarios, the model serves as
a customizable foundation for accurately reflecting the
specific dynamics of the application context.

References

Björk, B. C. (1992). A unified approach for modelling
construction information. Building and Environment,
27 (2), 173–194.

Blanchard, B. S. (2004). System Engineering Management (3rd
ed.). John Wiley & Sons. Hoboken, NJ, USA.

Bonnet, S., Voirin, J., Normand, V., & Exertier, D. (2015).
Implementing the MBSE Cultural Change:
Organization, Coaching and Lessons Learned.
INCOSE International Symposium, 25 (1), 508–523.
Seattle, AW, USA.

Bott, M., & Mesmer, B. (2020). An Analysis of Theories
Supporting Agile Scrum and the Use of Scrum in
Systems Engineering. Engineering Management Journal,
32 (2), 76–85.

Darrin, M. A. G., & Devereux, W. S. (2017). The Agile
Manifesto, Design Thinking and Systems
Engineering. 2017 Annual IEEE International Systems
Conference (SysCon), 1–5. Montreal, QC, Canada.

Dingsøyr, T., Nerur, S., Balijepally, V., & Moe, N. B.
(2012). A decade of agile methodologies: Towards
explaining agile software development. Journal of
Systems and Software, 85 (6), 1213–1221.

Dove, R. (2014). Agile Systems‐Engineering AND
Agile‐Systems Engineering. INSIGHT, 17 (2), 6–10.

Dove, R. (2017). On Defining Agile Systems Engineering.
INSIGHT, 20 (3), 75–76.

Dove, R. (2018). Synergy: Agile Systems Engineering and
Product Line Engineering at Rockwell Collins.
INSIGHT, 21 (2), 43–46.

Dove, R., & LaBarge, R. (2014a). 8.4.1 Fundamentals of
Agile Systems Engineering – Part 1. INCOSE
International Symposium, 24 (1), 859–875.

Dove, R., & LaBarge, R. (2014b). 8.4.2 Fundamentals of
Agile Systems Engineering – Part 2. INCOSE
International Symposium, 24 (1), 876–892.

Dove, R., & Schindel, B. (2019). Agile Systems
Engineering Life Cycle Model for Mixed Discipline
Engineering. INCOSE International Symposium, 29
(1), 86–104.

Dove, R., Schindel, W. B., & Garlington, K. (2018). Case
Study: Agile Systems Engineering at Lockheed
Martin Aeronautics Integrated Fighter Group.
INCOSE International Symposium, 28 (1), 303–320.

Ebert, C., & Kirschke-Biller, F. (2021). Agile Systems
Engineering. IEEE Software, 38 (4), 7–15.

Fadillah, A. P., & Fitriana, D. (2019). Design of Project
Data Management Information System. IOP
Conference Series: Materials Science and Engineering, 662
(2).

Forsberg, Kevin and Mooz, Hal and Cotterman, H.
(2005). Visualizing project management: models and
frameworks for mastering complex systems. John Wiley \&
Sons.

Haberfellner, R., & de Weck, O. (2005). 10.1.3 Agile
SYSTEMS ENGINEERING versus AGILE
SYSTEMS engineering. INCOSE International
Symposium, 15 (1), 1449–1465.

Hause, M. (2023). Agile MBSE: Doing the Same Thing
We Have Always Done, but in an Agile Way with
Models. INSIGHT, 26 (2), 31–33.

INCOSE. (2015). Systems Engineering Handbook (4th ed.).
John Wiley & Sons, Inc. Hoboken, NJ, USA.

INCOSE, IEEE Systems Council, & Systems Engineering
Research Center. (2023). Guide to the Systems
Engineering Body of Knowledge (SEBoK).

Kanavouras, K., Hein, A. M., & Sachidanand, M. (2022).
Agile Systems Engineering for sub-CubeSat scale
spacecraft. ArXiv.

Karim, A., & Adeli, H. (1999). OO Information Model
for Construction Project Management. Journal of
Construction Engineering and Management, 125 (5), 361–
367.

Luiten, G., Froese, T., Cooper, G., & Cad, R. J. (1993). An
information reference model for architecture,
engineering, and construction. 1st International
Conference on the Management of Information Technology for
Construction, August, 1–10.

XXIX SUMMER SCHOOL “Francesco Turco” – Industrial Systems Engineering

Marbach, P., Rosser, L., Osvalds, G., & Lempia, D.
(2015). Principles for Agile Development. INCOSE
International Symposium, 25 (1), 524–537.

Martin Fowler, & Highsmith, J. (2001). The Agile Manifesto.

Ottaviani, F. M., Rebuglio, M., & De Marco, A. (2023).
Project Management Information System Data
Model Development and Explanation. Proceedings of
the 13th International Conference on Simulation and
Modeling Methodologies, Technologies and Applications,
210–217.

Rahman, M., Islam, S., Fardous, R., Yesmin, L., & Nandi,
D. (2022). Applying Scrum Development on Safety
Critical Systems. International Journal of Information
Technology and Computer Science, 14 (5), 44–57.

Raimond, L. (1987). Information systems design for
project management: a data modeling approach.
Project Management Journal, 18 (4), 94–99.

Rosser, L., Marbach, P., Osvalds, G., & Lempia, D.
(2014). 7.4.2 Systems Engineering for Software
Intensive Projects Using Agile Methods. INCOSE
International Symposium, 24 (1), 729–744.

Schindel, B., & Dove, R. (2016). Introduction to the Agile
Systems Engineering Life Cycle MBSE Pattern.
INCOSE International Symposium, 26 (1), 725–742.

Wolff, C., Tendyra, P., & Wiecher, C. (2021). Agile
Systems Engineering in Complex Scenarios. 11th
IEEE International Conference on Intelligent Data
Acquisition and Advanced Computing Systems: Technology
and Applications (IDAACS), 1, 323–328. Cracow,
Poland.

Yeganegi, K., & Safaeian, S. (2012). Design of Project
Management Information Systems. International
Conference on Industrial Engineering and Operations
Management, 2545–2551.

	1. Introduction
	2. Literature Review
	2.1 Agile Development and Systems Engineering
	2.2 Project Management Conceptual Models
	2.3 Summary

	3. Methodology
	3.1 Notation
	3.2 Model

	4. Discussion
	5. Conclusions
	References

