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Abstract: In today's increasingly vulnerable supply chain landscape, the ability to anticipate risks is paramount for 
business survival. Of particular importance is the estimation of supplier delivery delays, especially for companies heavily 
reliant on outsourcing and just-in-time practices, where late deliveries can disrupt production flow and result in 
significant revenue loss. Recognizing this critical need, researchers have developed machine learning models to forecast 
supplier delivery delays. However, existing models often overlook the possibility of a single order being delivered in 
multiple shipments by the supplier. To address this limitation, this study thus proposes a novel multioutput regression 
model to deal with delivery delay predictions in presence of partial shipments conditions. The proposed model is thus 
built to be able to estimate four key variables for each order: the days between the planned delivery date and the date 
of the first partial shipment, the days between the planned delivery date and the date of the second partial shipment 
and the amount of quantity delivered respectively in the first e second partial shipments. An empirical investigation of 
the predictive accuracy reachable by the proposed approach, based on real-world data from an automotive case study, 
is conducted to evaluate the proposed approach's effectiveness. Moreover, the capability of the proposed approach to 
properly estimate the real cost impact generated by the non punctual delivery of purchased components is compared 
with the capability to estimate the same effect using a model not specifically designed to consider situations involving 
partial shipments. 
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1.Introduction 

In recent years, Artificial Intelligence (AI) (Cannas et al. 
2023; Helo & Hao 2021) and more specifically Machine 
Learning (ML) (Akbari & Do 2021; Ni, Xiao & Lim 2020) 
have witnessed significant advancements leading to a deep 
transformation of established supply chain management 
(SCM) practices. 

Simultaneously, the increased number of 
disruptions faced by supply chains in different sectors 
caused by natural disasters, geopolitical tensions, or global 
pandemics, has highlighted the need for more robust and 
adaptive risk management strategies and has led industries 
to rethink their risk management practices by implementing 
these new technologies to identify, assess and mitigate 
future risks (Baryannis et al. 2019; Gabellini et al. 2022, 
2023; Ganesh & Kalpana 2022; Regattieri et al. 2024).  

The problem of designing efficient ML algorithms 
in the field of Supply Chain Risk Management (SCRM) has 
thus assumed increasing relevance. In particular, among 
various risks affecting supply chains, the prediction of 
supplier delivery delay risks has received remarkable 
attention from scholars. Indeed, the widespread adoption 
of lean management practices and the consequent need for 
on-time delivery to avoid inventory stockout has motivated 

several researchers to propose models to anticipate possible 
nonpunctual delivery of purchased components.  

One of the first studies addressing the problem is 
the one by Baryannis, Dani, et al.(2019). In their study, 
authors proposed a ML approach to estimate if future order 
will be in late or not. Moreover, in the study authors also 
investigated the advantages and disadvantages of adopting 
more or less interpretable ML models for the predictions. 
Later on, Cavalcante et al., (2019) proposed to adopt a 
similar model to estimate in a binary form the on-time 
delivery of suppliers and integrate these predictions in a rule 
base system to support the allocation of orders to suppliers 
based on their forecasted reliablity. Afterwards, in Brintrup 
et al., (2020) the advantages of introducing engineered 
features to enhance predictions for the problem of 
classifying deliveries as punctual or not has been 
investigated. The study of Steinberg et al., (2023) represents 
instead the first attempt to explicitly design a ML model not 
only able to identify if an order would have been delivered 
in late or not, but also able to estimate the exact amount of 
days of delay. Another approach, implementing regression 
models can be found in Gabellini, et al. (2024). Here, in 
addition, authors have considered the value of 
macroeconomics indicators to increase prediction accuracy.  
Lastly, several other recent contributions to solve the 
problem can be found in Bodendorf et al., (2023) and 
Zheng et al., (2023). In the former, authors solved the 
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problem of classifying future orders as on time or not 
leveraging not only internal to company data but also 
relying on macroeconomic indicators. Conversely, Zheng 
et al., (2023), proposed for the first time a federated 
learning approach to allow companies having the same 
suppliers to share their delivery punctuality data to increase 
prediction accuracy.  

Although these studies provide a reference point 
in supplier delivery delay predictions, some gaps can 
however be noticed. In particular, an often-overlooked 
aspect when dealing with real-world delivery is the 
phenomenon of partial shipment. Specifically, partial 
shipment refers to the delivery of an order in more than 
one shipment (Banerjee et al. 2001; Gabellini, et al. 2024). 
The presence of partial shipments can thus complicate 
delivery delay prediction efforts, as traditional models may 
not adequately account for the variability introduced by 
partial shipments. Indeed, in the proposed literature, a 
single delivery punctuality value is estimated for each order, 
while the presence of partial shipment requires associating 
a number of predictions equal to the number of partial 
shipments to each order.  

To cover this gap, this study thus proposes a novel 
ML-based approach for delivery delay prediction that 
explicitly considers partial shipments. Furthermore, an 
empirical investigation is conducted based on data coming 
from a real case study in the automotive sector to address 
the following research questions: 

1. Which predictive accuracy can the proposed 
approach reach in estimating the days of delay and 
the delivered quantity in each partial shipment? 

2. Which advantages can the proposed model lead 
in the estimation of the cost impact of non-
punctual delivery compared to a model not 
specifically designed to consider partial 
shipments? 

3. Does the proposed model require more 
computational time to be trained than a model not 
specifically designed to consider partial 
shipments? 

The remainder of this paper is organized as 
follows. Section 2 outlines the proposed model and the 
methodology adopted to investigate its potential. Section 3 
presents the empirical results. Finally, Section 4 discusses 
the result and concludes the paper. 

2. Materials and Methods 

The proposed model and the experimental design adopted 
to investigate its performance are presented in this Section. 

2.1 Proposed model 

The design of a ML model involves several steps. Among 
these steps the definition of the problem to solve and 
identification of the variables to predict, the selection of the 
variables adopted as input for the predictions and the 
specification of the ML architecture to adopt, represent 
some of the most essential aspects to take into 

consideration. For this reason, each of these aspects is 
detailed in the following sections. 

2.1.1 Problem definition and selected target variables 

According to the contributions stated in Section 1, the aim 
of the proposed model is to punctually estimate the delivery 
punctuality of purchased components also when partial 
shipments occur. Therefore, the proposed model has been 
designed to solve a regression problem where the exact 
amount of a specific variable needs to be estimated. More 
specifically, as multiple partial shipments can occur for each 
order, the proposed model has been designed to solve a 
multi-output regression problem. In particular, assuming 
that for the majority of the cases, no more than two partial 
shipments originate from a single order, for each order, the 
selected target variables predicted by the proposed models 
are represented by:  

1. The number of days of delay or advance reported in 
the first partial shipment related to a specific order of 
a specific component 

2. The number of days of delay or advance reported  in 
the second partial shipment related to a specific order 
of a specific component 

3. The amount of quantity delivered in the first partial 
shipment related to a specific order of a specific 
component 

The quantity delivered in the second partial 
shipment related to a specific order of a specific 
component has been assumed to be an unnecessary 
prediction as it can be deduced by subtracting the original 
ordered quantity from the target variable defined at point 
3. 

2.1.2 Proposed input variables 

Based on the defined problem, the following variables have 
been proposed to be adopted as input to predict the three 
targets defined in Section 2.1.1: 

1. The year, month, week, and day of the week related to 
the planned date on which the ordered component 
should be delivered. 

2. The quantity planned to be received for the specific 
component. 

3. The last historical value recorded for a specific 
component of the three target variables defined in 
Section 2.1.1. 

4. The supplier in charge of the specific delivery. 

2.1.3 Proposed model architecture 

A gradient-boosting machine learning architecture called 
CatBoost has been proposed as potential architecture for 
the investigated problem. The decision to utilize CatBoost, 
a non-linear gradient boosting model, for the predictive 
module was made for several reasons. While linear models 
are typically quicker to train, non-linear machine learning 
models such as CatBoost excel at capturing complex 
relationships and patterns, particularly in large datasets.  
Secondly, gradient boosting models offer higher 
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explainability compared to non-linear black box models like 
neural networks or support vector machines. Lastly, among 
gradient boosting algorithms, CatBoost, despite requiring 
longer training times than LightGBM, has demonstrated 
superior predictive performance when applied to tabular 
data (Dorogush, Ershov & Gulin 2018).  

2.2 Experimental design 

The case study selected to investigate the proposed 
approach and the data collected in relation to it are 
presented in this section. Moreover, the benchmark model 
against which the performance of the proposed approach 
has been compared, the metrics adopted for the 
comparison and the experimental setup adopted to 
perform the computation are presented. 

2.2.1 Data collection 

A real case study in the automotive sector has been selected 
to test the performances of the proposed model. 2248 
different components supplied by 159 different suppliers 
over a period of 4 years where partial shipments occurred 
have been considered. In particular, the delivery punctuality 
observed in the first and in second partial shipments has 
been recorded for each component. Moreover, the amount 
of components delivered in each partial shipment has been 
tracked. The collected data can be available upon request. 

2.2.2 Benchmark model 

In line with the models proposed in the literature, a model 
able to estimate only one delivery punctuality value for each 
order of a specific component has been considered as the 
benchmark of the proposed approach. In particular, the 
value predicted by the benchmark approach in the presence 
of a partial shipment is represented by the mean of the 
delivery punctuality value reported in the two partial 
shipments. The same CatBoost algorithm adopted for the 
proposed model has been considered for building the 
benchmark model. This choice has been made to avoid 
differences in results related to the selection of different 
algorithms. Moreover, for the same reason, the same 
features described in Section 3.1 have been adopted as 
predictors also in this model. 

2.2.3 Evaluation metrics 

Two different metrics have been considered to evaluate the 
proposed model's performance and compare it against the 
benchmark. 

First, two widely adopted accuracy metrics have 
been considered to evaluate the predictive capability of the 
proposed model: the Mean Absolute Error (MAE) and the 
Mean Absolute Percentage Error (MAPE). In particular the 
errors have been computed with respect of each 
component i: 

𝑀𝐴𝐸𝑖 =  
1
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Where T is the number of deliveries recorded for 

the specific component i, 𝑦𝑖𝑡  represent the real delivery 

punctuality experienced by component i in the delivery t, 

while 𝑦̂𝑖𝑡 represent the delivery punctuality estimated by the 
proposed model for the same component i and delivery t. 

In addition, a new tailored cost metrics has been 
introduced to assess the capability of both the proposed 
and the benchmark models to estimate the cost impact 
generated by non-punctual deliveries. Specifically, the 
introduced Delivery Cost Impact Error (DCIE) metric has 
been defined as: 

𝐷𝐶𝐼𝐸𝑖 =  |
∑ 𝐶𝑖
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Where:  

• 𝐶𝑖
𝐻𝑂𝐿𝐷𝐼𝑁𝐺  is the unitary holding cost of 

component i expressed in  

[𝑒𝑢𝑟𝑜 𝑝𝑖𝑒𝑐𝑒𝑠 ∗ 𝑑𝑎𝑦𝑠⁄ ], 

• 𝐶𝑖
𝑆𝐻𝑂𝑅𝑇𝐴𝐺𝐸  is the unitary shortage cost of 

component i expressed in 

[𝑒𝑢𝑟𝑜 𝑝𝑖𝑒𝑐𝑒𝑠 ∗ 𝑑𝑎𝑦𝑠⁄ ],  

• 𝑞𝑖𝑡 is the quantity of component i delivered in the 

delivery t expressed in [𝑝𝑖𝑒𝑐𝑒𝑠] 

•  𝑦̂𝑖𝑡
𝐴𝐷𝑉𝐴𝑁𝐶𝐸  represent the estimated amount of 

days of advance with which the component i has 
been delivered in delivery t 

• 𝑦̂𝑖𝑡
𝐷𝐸𝐿𝐴𝑌 represent the estimated amount of days 

of delay with which the component i has been 
delivered in delivery t 

•  𝑦𝑖𝑡
𝐴𝐷𝑉𝐴𝑁𝐶𝐸  represent the true amount of days of 

advance with which the component i has been 
delivered in delivery t 

• 𝑦𝑖𝑡
𝐷𝐸𝐿𝐴𝑌 represent the true amount of days of delay 

with which the component i has been delivered in 
delivery t 

Compared with the MAE and MAPE metrics the DCIE 
thus allows to compare the results obtained from the 
proposed and the benchmark model when evaluating the 
capability of each model to estimate the real impact that 
deliveries in delay or advance generate in the presence of 
partial shipments. Indeed, a fair comparison was impossible 
to obtain based on the accuracy metrics as the two models 
differ in predicted output.  Indeed, in presence of partial 
shipments, for a specific component, the benchmark model 
predicts the mean punctuality over the recorded partial 
shipments. Contrarywise, the proposed model punctually 
estimates the delivery punctuality and the respective 
percentage of the overall quantity delivered in each partial 
shipment. On the contrary, even if the two models estimate 
different values, the DCIE allows to compare in economic 
terms the capability of the two models to estimate which of 
the two models commits the lower error in estimating the 
real impact generated by component delivery issues. In 
particular, the denominator of Equation 3 always refers to 
the real situation where partial shipments occur. On the 
contrary, based on the considered model, the numerator is 
computed considering the values related to each partial 
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shipment (when implementing the proposed model) or an 
approximation considering the mean delay or advance over 
the partial shipments composing the ordered quantity 
(when considering the benchmark model).  

2.2.4 Experimental set up 

For each of the 2248 considered components, the same 
experimental setup was followed.  

First, the historical records of the selected target 
variables and input features of the proposed model and 
benchmark approach have been split over time in three 
subsets: the training set, the validation set and the test set. 
An exemplification of this division is reported in Figure 1. 
Here, a red line illustrates the three distinct set of data for 
the historical record of the target variables predicted by the 
models. In particular Figure 1.a reports the split over the 
historical record of the mean days of advance or delay 
reported by a specific component which represents the 
variable predicted by the benchmark model. Contrarywise, 
Figures 1.b and 1.c reported the historical records related 
to the days of delay or advance reported in each partial 
shipment and the quantity respectively delivered in each 
shipment for the same component. 

 

Figure 1: Target variables split into training, 
validation and test subsets 

Based on this split, the training set, has thus been initially 
adopted to train the proposed and the benchmark models 
and to allow them to learn the hidden relationship between 
the input variables described in Section 2.1.2 and the target 
variables to estimate.  

The validation set has been instead adopted to 
identify the best hyperparameters to adopt for each model. 
A summary of the considered hyperparameters and the 

research space within which the value of each 
hyperparameter has been searched is reported in Table 1.  

Table 1: Hyperparameters research space 

Hyperparameters Hyperparameters 
research space 

Learning rate 0.01 – 0.1 

Depth 4 – 8 

L2 leaf regularization 1e-6 – 1e-2 

 

In particular, for both the proposed and the benchmark 
models, a time limit of 8 hours has been considered for the 
identification of the best hyperparameter values. Within 
this time, a Bayesian optimization strategy has been 
adopted to progressively sample new combinations of the 
investigated hyperparameters within their respective 
research space to find the hyperparameters combination 
reporting the lowest Root Mean Squared Error (RMSE) 
over the predictions generated for the validation set, where 
the RMSE has been defined as: 

𝑅𝑀𝑆𝐸 =
1

𝑁
∑ √

∑ (𝑦𝑖𝑡 − 𝑦̂𝑖𝑡)2𝑇
𝑡=1

𝑇

𝑁

𝑖=1
(4)  

Here N is the number of considered components, T is the 
number of deliveries recorded for the specific component 

i, 𝑦𝑖𝑡 represent the real days of delay or advance 

experienced by component i in the delivery t, while 𝑦̂𝑖𝑡 
represent the days of delay or advance estimated by the 
proposed model for the same component i and delivery t. 

The optimal number of iterations to consider in 
training the model has been identified based on an early 
stop strategy. More specifically, an initial number of 1000 
iterations has been considered for each model. Afterward, 
as reported in Figure 2, by monitoring the RMSE error 
reported by both the models over the training and the 
validation set, the training of the models has been stopped 
when 20 consecutive iterations with no improvements in 
terms of the RMSE reported in the validation set have been 
found. 

 

Figure 2: Early stopping procedure 

Lastly, when the optimal value of the investigated 
hyperparameters have been found, both the models have 
been retrained considering the identified hyperparameters 
on both the historical data contained in the training and in 
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the validation set and the MAE, MAPE and DCIE have 
been computed with respect of the predictions and the true 
value reported in the test set. 

The optimal value of the selected 
hyperparameters for the proposed and the benchmark 
model are reported in Table 2. 

Table 2: Selected hyperparameter values 

Hyperparameters Proposed 
model 

Benchmark 
model  

Learning rate 0.086 0.084 

Depth 8 4 

L2 leaf 
regularization 

4.9 e-5 1.2 e-6 

Iterations 55 65 

 

In the study, all the experiments were performed on 
computer, with a processor Intel(R) Core(TM) i7-8550U 
running at 1.80GHz. The system utilized 16 GB of RAM. 
All experiments were performed with Windows 10 Pro as 
the operating system, and all the code has been written in 
Python. The CatBoost library has been adopted to 
implement the models, while the Bayesian optimization has 
been implemented through the Optuna library. 

3. Results 

In this Section first the accuracy reached by the proposed 
approach in terms of MAE and MAPE is presented. 
Afterward, a comparison between the DCIE reported by 
the proposed approach and the benchmark approach is 
made. 

3.1 Proposed approach prediction accuracy 

The boxplot in Figure 3 reports the distribution of the 
MAE when comparing the predictions provided by the 
proposed model with the real value observed over the test 
set for each of the 2248 considered components.  

 

Figure 3: Mean Absolute Error reported by the 
proposed approach 

According to the chart, a median value of 8.2 and 1.9 days 
has been observed respectively when considering the 
difference between the predictions reported by the 
proposed approach and the true delivery punctuality of 
the first and the second partial shipment. A median value 
of 1.5 pieces has been instead found between the values 

estimated by the proposed approach and the true amount 
of pieces delivered in the first delivery. The error’s 
interquartile spans from a minimum of 0 to a maximum 
of 28.5 days for the predictions related to the first partial 
shipment delivery punctuality. On the contrary, the 
interquartile related to the predictions of the second 
partial shipment delivery punctuality has been observed to 
vary between 0 to 10.7 days. Lastly the error’s interquartile 
related to the prediction of the quantity delivered in the 
first partial shipment have been observed to vary from 0 
to 14.8 pieces. 

The boxplot reported in Figure 4, reports instead 
the distribution of the MAPE over the test set. 

 

Figure 4: Mean Absolute Percentage Error reported 
by the proposed approach 

According to the chart a median value of 122%, 97%, 9% 
has been observed respectively when considering the 
difference between the predictions reported by the 
proposed approach and the true delivery punctuality of 
the first partial shipment, the true delivery punctuality of 
the second partial shipment and the true quantity 
delivered in the first partial shipment. The error’s 
interquartile has been observed to span respectively from 
a minimum of 1% to a maximum of 352% for the first 
target, from 22% to 162% for the second target and from 
1% to 112% for the third target. 

3.2 Delivery cost impact error comparison  

The results of the comparison between the results 
produced by the proposed approach and the benchmark 
model in terms of DCIE are reported in Figure 5. In 
particular the chart reports the distribution of the variable 

∆ 𝐷𝐶𝐼𝐸𝑖 defined as: 

∆ 𝐷𝐶𝐼𝐸𝑖 =  𝐷𝐶𝐼𝐸𝑖
𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑

−  𝐷𝐶𝐼𝐸𝑖
𝑏𝑒𝑛𝑐ℎ𝑎𝑚𝑟𝑘  (5) 

For each component i the variable ∆ 𝐷𝐶𝐼𝐸𝑖 thus 
allow to understand if the proposed or the benchmark 
model represent a better estimation of the real impact 
generated by non punctual delivery. In particular, a negative 

value of the variable ∆ 𝐷𝐶𝐼𝐸𝑖  indicates that the proposed 
approach resulted in a better estimation of the delivery cost 
impact compared to the benchmark approach. Conversely, 
a value greater than zero means that the benchmark 
approach resulted in a better model to estimate the impact 
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generated by non punctual deliveries compared to the 
proposed model. 

 

Figure 5: Delivery cost impact error difference 
distribution between the proposed and the 

benchmark approach 

According to the chart for 75 % of the considered 

components a negative ∆ 𝐷𝐶𝐼𝐸𝑖  value has been reported. 
In particular, for 50 % of the considered components a 

∆ 𝐷𝐶𝐼𝐸𝑖 between 0 % and -20 % has been observed. On 
the contrary, only for the remaining 25 % positive values 

of the ∆ 𝐷𝐶𝐼𝐸𝑖  variable has been observed, meaning that 
in this case the proposed approach not represent a better 
estimation of the real cost impact compared to the 
benchmark approach. 

3.3 Training time comparisons 

Lastly, the results of the comparison in terms of training 
time (expressed in seconds) required by the proposed 
model and by the benchmark approach to perform their 
training is reported in Figure 6.  

 

Figure 6: Training time comparison between the 
proposed and the benchmark approach 

According to the Figure no significant difference has been 
found in the training times required by the proposed and 
the benchmark approach, which both take only a few 
seconds to be completed.  

4. Discussion and conclusions 

Artificial intelligence and machine learning models have 
been recently identified as fundamental tools to proactively 
estimate supply chain risks. For this reason, over time, 
several studies have proposed models to forecast future 
risks. In particular, considerable attention has been recently 
obtained by models predicting component delivery 

punctuality due to the impact that nonpunctual delivery can 
produce in manufacturing systems. 

However, while these models are able to estimate 
components’ delivery punctuality under normal conditions, 
they fail to model situations where orders are not only 
delivered late or in advance but the originally ordered 
quantity is also delivered and split over multiple partial 
shipments. For this reason, the present study thus 
proposed a new model able to predict the delivery 
punctuality of purchased components also under partial 
shipment circumstances. 

The accuracy of the proposed model in terms of 
Mean Absolute Error (MAE) and Mean Absolute 
Percentage Error (MAPE) has been investigated through 
an experimental design based on data related to a real 
automotive case study. Moreover, a new metric, the 
Delivery Cost Impact Error (DCIE) has been introduced 
to compare the capability of the proposed approach to 
estimate the real impact that non-punctual delivery can 
generate with a benchmark model not explicitly designed to 
address partial shipment conditions.  

 In particular, considering the RQ1: Which 
predictive accuracy can the proposed approach reach in 
estimating the days of delay and the delivered quantity in 
each partial shipment? The empirical investigations 
reported that for half of the considered component error 
of 122%, 97%, 9% in predicting the days of delay or 
advance of the first and the second partial shipment, and 
the amount of quantity delivered in the first partial 
shipment has been reported by the proposed model in 
terms of MAPE. Results thus highlight that, while 
predicting the quantity delivered in each partial shipment 
can be easily forecasted, the estimation of the delivery 
delays reported in each shipment is not easy also for 
advanced machine learning models. However, it has also to 
be noticed that for 25 % of the considered components the 
MAPE error when estimating the delivery punctuality 
reported in the first and in the second partial shipments stay 
in a lower range spanning from 0% to and from 90% and 
from 15% to 85% in terms of MAPE respectively. 
Moreover, when considering the MAE error reported by 
the proposed model, it has to be considered that similar 
errors have also been reported in other studies (Steinberg 
et al. 2023). 

Considering the RQ2: Which advantages can the proposed 
model lead in the estimation of the cost impact of non-
punctual delivery compared to a model not specifically 
designed to consider partial shipments? The comparison 
performed between the benchmark model and a generic 
model not explicitly designed for partial shipments revealed 
that for 75% of the considered components, the proposed 
model resulted in a better estimation of the cost impact that 
components’ non-punctual delivery can generate. 

Lastly, considering the RQ3: Does the proposed 
model require more computational time to be trained than 
a model not specifically designed to consider partial 
shipments? No significant difference in terms of 
computational times has been observed between the 
proposed model and the benchmark. This result, thus 
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suggest that the cost impact estimation advantages reported 
by the proposed model don’t come at the cost of a 
significantly increased computational effort to train the 
model. 

These results need to be however considered 
subjected to some limitations. In particular, only one case 
study has been adopted to investigate the capability of the 
proposed approach. Moreover, the hyperparameter tuning 
phase has been limited to 8 hours. 

Based on these limitations, future research can be 
thus directed to investigate the capability of the proposed 
approach on multiple case studies and to eventually extend 
the time considered in the hyperparameter tuning phases. 
In addition, incorporating the developed predictive models 
to design effective optimization models to solve typical 
decision-making problems arising in the context of supply 
chain management like supplier selection and order 
allocation or inventory management could represent and 
interesting future research direction. 
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