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Abstract:  Indoor positioning technology plays a vital role in tracking movements within spaces where traditional 
outdoor GPS systems fail to operate effectively. This research employed Ultra-Wideband (UWB) technology to 
monitor the live trajectory of operators within an actual production facility. The system's effectiveness was assessed in 
two key zones: the goods receiving and shipping area, and the space amidst warehouse shelves. Enhanced results were 
achieved through the implementation of various filtering techniques. Nonetheless, the study also uncovered practical 
limitations, revealing a level of accuracy lower than expected. 
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1. Introduction 

There are many people tracking systems to be exploited in 
different environments, such as warehouses, hospitals, 
schools, farms, and supermarkets. These systems localize 
movements within structures, where GPS technologies 
applied to outdoor environments cannot function. Indoor 
positioning technology is used to track the movements of 
goods, operators, or vehicles (Barral et al. 2019b), to detect 
incidents and ensure worker safety (Singh, Kalaichelvi & 
Karthikeyan 2023a), to manage warehouse activities and 
logistical operations, including order-picking activities 
(Zadgaonkar & Chandak 2021), defining routes (Okumuş, 
Dönmez & Kocamaz 2020), bottleneck identification or 
rylayout. Other fields of application are the geolocation of 
people (Liao et al. 2016), items (Sun & Ma 2017), robots 
(Murdan & Emambocus 2018), AGVs (Zhang Xinand 
Wang, 2013), or UAVs (Jin et al. 2023). The tracking 
methods can be light-based (Jung & Song 2017), sound-
based (Gabbrielli et al. 2023), or radio frequency-based 
(Khan, Kai & Gul 2017). From the literature, there has 
been a significant contribution of radio frequency-based 
technologies, particularly RFID technology, which is the 
most widely used. The tag’s position calculation approaches 
are diverse: computer-based (Ooi, Lee & Chea 2018), 
constraint-based (Khalaf-Allah 2020), fingerprinting 
(Torteeka, Chundi & Dongkai 2014),  geometric methods 
(Gnaś & Adamkiewicz 2022) or self-processing (Singh, 
Kalaichelvi & Karthikeyan 2023b). The data used by those 
different approaches are image-based (Jung & Song 2017), 
signal characteristic-based (Torteeka et al. 2014), time-
based (Singh, Kalaichelvi & Karthikeyan 2023c), angle-
based (Singh et al. 2023b) or motion-based (Silva, Pendao 
& Moreira 2022). Using any localization method, accuracy 
will never be one hundred per cent. For this reason, filters 

can be used to improve the results obtained from the sole 
use of indoor positioning devices. Filters can be machine 
learning-based (Xiang et al. 2019), particle filters (Khalaf-
Allah 2020), clustering methods (Abed & Abdel-Qader 
2019), or other mathematic approaches, among these the 
most used filter is the Kalman filter (Barral et al. 2019b). 
UWB is a radio frequency-based technology that enables 
continuous real-time indoor tracking with higher accuracy 
than other radio frequency-based technologies  (Barral et 
al. 2019b; Sartayeva et al. 2023) In our study, we used UWB 
technology with geometric approaches, particularly 
trilateration, and chose Pozyx with time-based data such as 
TDoA (time difference of arrival) and Twr (Two Way 
ranging) to track the real-time movement of operators in 
the warehouse. As filters, we used median smoothing, 
exponential smoothing and mixed filters. Few studies have 
tested UWB in real-world scenarios, as in (Barral et al. 
2019a; Gnaś & Adamkiewicz 2022; Singh et al. 2023a), in 
contrast to the extensive research available on RFID. We 
aim to bridge this gap through our study that aims to assess 
the accuracy of UWB technology in a warehouse by 
tracking the movements of warehouse operators within a 
company. The study will highlight the strengths and 
weaknesses of this technology in a real word environment.  

2. Methodology 

The chosen tool to track the operator's real-time movement 
within the company warehouse is the Pozyx creator kit, a 
UWB system. The kit consists of five anchors and four tags, 
as shown in Figure 1 and Figure 2 respectively. Each tag 
moves along with the operator, a worker or a forklift, to 
detect its position relative to the anchors.  The chosen 
method for position calculation is trilateration, which uses 
basic geometry and determines the tag's position by 
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measuring the distance from the tag to three anchors. The 
tag's position is uniquely identified by the intersection of 
the three circles formed around the anchors. The data 
obtained from the tags and anchors include TWR and 
TDoA. The test was conducted on two distinct areas: the 
Modula’s area,the area in front of a two-unit vertical 
warehouse (Figure 3), and the shelving area (Figure 4). The 
computer with a tag was positioned in the centre of the 
area, and manual calibration was carried out by entering the 
coordinates of the anchors relative to the selected origin. 
The coordinates for the first setup are shown in Table 1, 
and those for the second setup are shown in Table 2. The 

Modula’s area covers 25.8 × 18.5 = 487 𝑚2. In this area 
five anchors were positioned within a maximum distance 
of 20 meters from each other (Figure 3). The shelving area 
is the area between two shelves, this area is five times 

smaller than the Modula’s area and covers 15.41 × 3.4 =
52 𝑚2 (Figure 4). Here the distance between each anchor 
is at most four meters. However, the narrow and elongated 
geometry does not allow all the anchors to always have a 
line of sight (LOS), making localization challenging. It was 
necessary to reposition the anchors between two shelves 
because the signal would not have been accurate if a shelf 
had been placed in between. Modula’s and Shelving areas 
typically contain an average of five people walking inside, 
two forklifts, and pallets loaded with materials positioned 
on the floor, all of these elements cause interference and 
non-line of sight (NLOS) between the anchors. In Figure 3 
and Figure 4 red lines represent NLOS between anchors, 
while green lines represent LOS. The greater the number 
of anchors, the higher the accuracy of the system, but also 
the cost. For this reason, a compromise had to be reached.  
Afterwards, by changing the host, topic, username, and 
password, it was possible to connect to the Pozyx cloud via 
the MQTT protocol and collect position data for the 
different two setups. Numerous tests were conducted in 
the two previously mentioned areas on different sampling 
days. After collecting the positioning data, it was necessary 
to improve them using filters. Filters were applied through 
the implementation of Python code written in Microsoft 
Visual Studio Code.  

             

Figure 1: Anchor                             Figure 2: Tag 7633 

 

 

 

Figure 3: Modula's Map. The two vertical warehouses are represented 
by the two rectangles on the left. Anchors are represented by green crosses and 
tags by blue circles. 

 

Figure 4: Shelving Map. Anchors are represented by green crosses and 

tags by blue circles. 

 

Table 1: Modula Setup (mm) 

Tag ID X Y 

7630 1800 19400 

7633 25770 0 

7648 15700 0 

7651 25900 18800 

7654 0 1800 

 

Table 2: Shelver Setup (mm) 

ID X Y 

7630 4200 3400 

7633 15413 0 

7648 8147 0 

7651 740 0 

7654 12462 3400 

3. Filters 

The displayed paths were obtained from processing the 
data collected by using filters. Filters are needed to have 
better accuracy, (Barral et al. 2019b). The applied filters 
included threshold, median smoothing, exponential 
smoothing and a mixed one. 

3.1 Threshold filter 

The raw data was modified by initially applying a 
"threshold" filter. It aims to eliminate duplicate points, as a 
matter of fact in our study, the tag was detected many times 
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in the same location on the warehouse map, distorting the 
actual path. For instance, when taking one of the paths, the 
percentage of duplicates was 64%, so removing them was 
crucial for cleaning the data. It also deletes points that are 
disproportionately distant from their preceding and 
succeeding points, compared to the time elapsed between 
their detections. In our study, if the distance measured 
between a point and its preceding and succeeding points 
was greater than one meter, then it was considered 
excessive, and the central point was eliminated. After all, 

the operator cannot have travelled 1 meter in 
1

20
 of a 

second, as data were collected at 20 Hz frequency.  

3.2 Median smoothing filter 

The "median smoothing" filter computes an average for 
each point using the four preceding and succeeding points 
for both x and y coordinates, as shown in Equation 1 for 
coordinate x. 

𝑥[𝑘] = 
𝑐𝑥[𝑘]+(∑ 𝑐𝑥[𝑘+𝑖]+𝑐𝑥[𝑘−𝑖])𝑖=4

𝑖=1

9
                                (1                      

where 𝑥[𝑘] is the filtered value for period [𝑘], 𝑐𝑥[𝑘] is the 

value detected by Pozyx for period k(𝑡 = 𝑘). In this case, 
every detected value has the same weight as the others. 

3.3 Exponential smoothing filter 

The "exponential smoothing" filter returns a data point that 
is a combination of the detected data and the forecast made 
in the previous points, as shown in Equation 2 for 
coordinate x. The same has to be calculated for coordinate 
y. This filter utilizes the previous forecast for the present 
and actual data to predict the next point with a weighted 
average. The weights exponentially decrease for past values.  

𝑥[𝑘 + 1] = 0.7 × 𝑐𝑥[𝑘] + (1 − 0.7) × 𝑥[𝑘]  (2 

where x is the forecast, 𝑐𝑥[𝑘] is the present value for 

period k (𝑡 = 𝑘), and 0.7 is the parameter alfa α 
determining how much the future forecast is based on 
present data or past forecasts. In this case, the forecast 

𝑥[𝑘 + 1] relies more on data based on the detected value 

𝑐𝑥[𝑘] rather than the forecast 𝑥[𝑘]. The Equation 1 can 
be written also as the Equation 3, where the future 
prediction is a weighted average of all past values, with 
weights decreasing exponentially. 

𝑥[𝑘 + 1] = ∑ 0.7 × (1 − 0.7)𝑖 × 𝑐𝑥[𝑘 − 𝑖]𝑖=𝑘
𝑖=0              (3 

3.4 Mixed filter 

Another type of filter, known as Mixed, employs the 
equation of exponential smoothing (Equation 2) with α 
value set to 0.3. As input data, it uses the output coordinates 
from the median smoothing equation. 

4. Results 

The results obtained from applying the code to the data 
collected by Pozyx are measured in terms of accuracy. The 
traced path is compared to the ground truth path, the latter 
was defined by applying a mark on the ground to be 
carefully followed. Filters were applied to modify the traced 
path of each tag and make it closer to the ground route 
path. To measure accuracy, several tests were conducted to 

assess how precise the system is in defining the position of 
the tag in the two areas of the warehouse.   

4.1 Accuracy calculation 

Accuracy is measured as Mean Absolute Error (MAE), 
which is the average of the distances between all points and 
their real counterparts, as calculated in Equation 4. 

𝑀𝐴𝐸 =
1

𝑛
∑ |�̂�𝑖 − 𝑦𝑖|𝑛

𝑖=1                                                  (4 

where �̂�𝑖are the predicted values, 𝑦𝑖are the observed values, 

and 𝑛 is the number of observations. The first step is to 
calculate the distance from the detected point to the real 
point where the operator passed. The actual path taken was 
marked on the ground with adhesive tape, and through 
Python code, the distance was calculated using the 
projection of the point onto the line. To calculate the 
distance from the actual line, it is necessary to define its 

angular coefficient 𝑚 and its parameter 𝑞, using two points 

on the line 𝑃2(𝑥2, 𝑦2) and 𝑃1(𝑥1, 𝑦1), through Equation 5 
and 6.  

𝑚 =
(𝑦2−𝑦1)

(𝑥2−𝑥1)
      (5 

𝑞 = 𝑦1 − 𝑚 × 𝑥1     (6 

The second step is to calculate the point on the actual line 

𝐴(𝑥, 𝑦) where the detected point 𝐴2(𝐴𝑥, 𝐴𝑦) should be, 

using the fEquation 7 and Equation 8. Finally, the 
Pythagorean theorem is applied to calculate the distance 
between the actual point and the point detected by Pozyx, 
using Equation 9. 

𝑥 =
(𝐴𝑥+𝐴𝑦×𝑚−𝑞×𝑚)

(𝑚2+1)
      (7 

𝑦 =
(𝐴𝑥×𝑚+𝐴𝑦×𝑚2−𝑞×𝑚2)

(𝑚2+1)
+ 𝑞    (8 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = √(𝐴𝑥 − 𝑥)2 + (𝐴𝑦 − 𝑦)
22

   (9 

4.2 Test settings 

Many filtered data are shown in Figure 5, Figure 6, Figure 
7: the yellow line is the raw data, the green line is the 
threshold filtered data, the blue line is the exponential 
smoothing filtered data, the red line is the median 
smoothing filtered data and finally the black line is the 
mixed filtered data. The first setup was designed by 
applying five points on the ground and traversing a 
rectangle, Figure 5, and a triangle, Figure 6. On the upper 
side of the rectangle, the data were not correctly detected 
due to metallic interferences placed in the middle of the 
area. As seen in Figure 5, the unfiltered data deviate from 
reality, and even the paths in green and blue show a 
deviation from reality for a few points. Mixed and median 
smoothing filters were influenced by this wrong data and 
they did not eliminate the wrong deviation but rather 
rounded it off causing the creation of further erroneous 
points. Indeed, the negative aspect of averaging, which 
results in a rounding of the curve, is that it would be 
accurate to have sharp edges to reflect the actual path. In 
the shelving area, the second setup, several tests were 
conducted. The first test involved assessing the quality of 
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the Pozyx system by traversing a triangle in the corridor 
between two shelves, as shown in Figure 7. 

 

Figure 5: Rectangular path 

            

Figure 6: Triangular path                  Figure 7: Shelving path   

4.3 Accuracy results 

Table 3 presents the accuracy results of the tests conducted 
in the warehouse, calculated using the MAE. Each row 
corresponds to a different path, and the accuracy varies 
based on the filter used, indicated in the respective column. 
P is a path, so it can be in the Modula zone (M), the central 
part of the Modula zone (C), or the shelving zone (S). The 
filters applied to the raw data R are: MI for mixed, M for 
median smoothing, E for exponential smoothing, and T for 
threshold. In addition, AM, AC and AS are the average 
accuracy values among all paths for each filter in the 
Modula zone, central Modula zone and shelving zone, 
respectively. Lastly, A is an average of the line. Tot A is the 
average for all the tests of each filter. For example, the 
accuracy results of the example in Figure 5 are in Table 3 in 
line M2, where the exponential smoothing has the best 
result. The accuracy results of the example in Figure 6 are 
in Table 3 in the line C2 where all the filters have roughly 
the same accuracy. The accuracy measured in the shelving 
area of the path shown in Figure 7 is in line S4 in Table 3. 

Table 3: MAE-filters-accuracy(cm)-paths 

P MI M E T R A 

M1 42.2 45.1 37.3 37.7 42.5 40.96 

M2 57.4 56.9 55.2 56.1 60.9 57.3 

M3 109.2 105.6 98.7 95.7 100.7 101.98 

M4 63.5 61.7 60.29 60.2 60.29 61.19 

M5 82 78 75.2 75.7 75.9 77.36 

AM 70.86 69.46 65.33 65.08 68.05 67.75 

       

C1 59.5 60.1 61.8 62.4 61.7 61.1 

C2 62.8 62.43 62.5 62.45 63.9 62.81 

C3 48.8 46.7 46.62 46.61 55.4 48.82 

C4 57.3 57.5 57.4 57.2 57.6 57.4 

AC 57.1 56.68 57.08 57.16 59.65 57.53 

       

S1 18.66 18.9 18.4 18.81 18.81 18.71 

S2 18 18.9 19.83 19.87 19.87 19.29 

S3 16.14 17.12 17.8 18.13 18.13 17.46 

S4 22.2 22.5 23 23.25 23.25 22.84 

S5 18.87 18.74 19.42 19.67 19.67 19.27 

AS 18.77 19.23 19.69 19.94 19.94 19.51 

Tot 
A 

48.32 47.87 46.67 46.69 48.47  

From the results in Table 3, it can be observed that the 
average accuracy greatly depends on the area in which the 
path is conducted: Modula, Central Modula, or shelving 
area. The average accuracy of these areas is 67.75, 57.53, 
and 19.51, respectively, highlighting that the accuracy range 
is almost tripled in the Modula area compared to the 
shelving area, which have an area nine times smaller. 
Furthermore, in the first area, the filters with the best 
average results are Exponential Smoothing (65.33) and 
Threshold (65.08) filters, in the second area, they are 
Median Smoothing (56.68) and Exponential Smoothing 
(57.08), and finally, in the shelving area, they are Mixed 
(18.77) and Median Smoothing (19.23) filters. Overall, the 
filters that performed best are Exponential Smoothing 
(46.67) and Threshold (46.69). Table 4 shows the 
percentage differences in accuracy achieved with a filter 
compared to the best (lowest) accuracy in that particular 
path. These values are calculated using the accuracies from 
Table 3. This calculation is performed for each row, 
meaning for each path. The average has been calculated for 
the module zone (AM), for the central area of the 
warehouse (AC), and for the shelving area (AS), obtaining 
respective average relative performance differences of the 
filters of 5%, 2%, and 5%. Indeed, in Table 4, it can be 
noted how, on average, the filters act uniformly. 
Furthermore, it can be observed that if the percentage in 
the raw data column (R) is high, then it means that the 
filters have correctly acted by modifying the collected raw 
data. 

Table 4: Percentage relative differences - % 

P L M E T R  

M1 13 21 0 1 14  

M2 4 3 0 2 10  

M3 14 10 3 0 5  

M4 5 2 0.1 0 0.1  

M5 9 4 0 1 1  

AM      5% 

C1 0 1 4 5 4  

C2 1 0 0.1 0.03 2  

C3 5 0.1 0.02 0 18  

C4 0.1 0.5 0.3 0 0.6  
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AC      2% 

S1 1 3 0 2 2  

S2 0 5 10 10 10  

S3 0 6 10 12 12  

S4 0 1 3 4 4  

S5 0.6 0 3 4 4  

AS      5% 

5. Management applications 

The management applications include data related to 
marked areas within the warehouse. It is desired to 
determine if the tag has passed through them and how 
many times, in order to construct a From-To chart matrix. 
The company's warehouse is divided into three marked 
areas: the unloading zone (black area in Figure 8) where 
materials are received from external suppliers, the storage 
area in the two Modula units (yellow area in Figure 8), and 
the input zone (blue area in Figure 8) where materials are 
prepared for storage upon receipt or before shipping. The 
From-To chart vector defines the zones where the operator 
has passed through; the time interval chosen to record the 
tag's location is every five seconds, implying that the 
operator is walking quickly from one zone to another. As 
shown in Figure 8 and Table 5, the operator started from 
the unloading zone(U), then passed to the Modula area(M), 
the input zone(I), the Modula area(M) again and finally the 
input zone(I).  

 

Figure 8: Markers’ zones 

 

Table 5: From-To matrix 

From/to U M I 

U X 1^  

M  X 2^,4^ 

I  3^ X 

 

With the From-To matrix information, we can create a 
heatmap to highlight the most visited areas of the 
warehouse. The heatmap is a graphical representation 
where the colours indicate the areas most frequented by the 
warehouse operator, with the hottest and darkest colors 
representing the highest frequency. In this example (Figure 
9), the coloured rectangle has been visited at least once, and 
the darker colour indicates the most visited areas, as 
explained in the "Wistia" colour legend in the upper-left 
part of the figure.  The operator spent nearly 35 minutes 
consistently in front of the Modula’s vertical warehouse, 

indicated by the orange colour, storing materials. By using 
this heatmap, it is possible to gather information about the 
possible presence of bottlenecks. All of this information 
can be used to enhance logistics and reconfigure the layout 
if necessary.  

 

Figure 9: Heat-map 

By monitoring the paths of operators inside the warehouse, 
excessive movements or time-consuming travel distances 
can be identified, which can then be optimized to improve 
the working environment. Two 30-minute experiments 
were conducted, in which the operator had to store the 
material from the unloading zone to the shelving area 
(Figure 10) or from the unloading zone to the Modula’s 
area (Figure 11). The operator’s path is represented by the 
red line, after applying the median smoothing filter. In 
Figure 11, it can be noticed how, after the modification of 
the layout, the operator has a shorter distance to travel to 
reach the warehouse area from the unloading zone during 
merchandise allocation. This streamlines the process, as the 
merchandise is directly stored in the Modula upon receipt 
from the truck. The use of the Pozyx device allows the 
calculation of distances travelled, improving the efficiency 
of the warehouse.  

 

Figure 10: Shelving warehouse 

 

Figure 11: Modula warehouse 

The second output obtained from using the Python code is 
the percentage of points not detected by Pozyx due to 
interference. The ideal condition is that the anchors and 
tags of the creator kit collect data at a frequency of 20 Hz, 
meaning 20 positions per second, but unfortunately, the 
percentage of detected data is never fully met. The third 
output is the percentage of points eliminated due to 
excessive distances, while the fourth output is the 
percentage of points eliminated because they are duplicates, 
as they were both explained before in the threshold filter 
part. The fifth output is the distance travelled by the 
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operator traced by the tag, using the x and y coordinates 
detected by Pozyx calculating the Pythagorean theorem. 
The sixth output is the elapsed time of the travel converted 
from a timestamp value to a value in seconds. The seventh 
output is the average speed, which is calculated using the 
space and time data. Lastly, the final output is the 
visualization of the path on the Pygame window projected 
onto the real map of the warehouse where the tests were 
conducted, as shown in Figure 8.  

6. Discussion 

The Ultra-Wideband (UWB) technology has been gaining 
attention in recent years due to its exceptional capabilities 
in indoor positioning systems. UWB technology offers 
several advantages over other technologies, such as 
Bluetooth, WiFi, and RFID which have lower accuracy.   

Our study revealed that the placement of anchors and the 
movement of tags significantly affect path accuracy. The 
environment can have different physical, (Vui & Nordin 
2014), and electromagnetic interferences, (Silva et al. 2022): 
physical obstacles, electromagnetic sources, objects in 
movement, changes in the radio frequency environment, 
and absorbing materials, all of these can affect the accuracy 
of measurements. 

In our study, we identified several obstacles that can affect 
the functioning of the geolocation system. These include 
interferences and signal loss caused by excessive distances 
between the anchors or physical obstacles. The accuracy of 
our results, remained at approximately 60 cm in the Modula 
area and 20 cm in the shelving area, this difference in 
accuracy was probably due to physical obstructions, 
especially metallic ones, as in (Bartoletti et al. 2018). The 
difference in accuracy could also be attributed to the larger 
distance between anchors in the Modula area, which covers 
a greater space. Indeed, we noticed a significant 
improvement in accuracy when the anchors were placed 
closely together, such as in the shelving area where the 
anchors were 4 meters apart. Deploying a large number of 
anchors to monitor the entire facility simultaneously would 
lead to better results to a significant increase in costs. In 
this paper, various filters were applied and the results were 
than compared to each other. There was not a significant 
improvement in using one filter over another; however, on 
average, all filters yielded better results compared to the raw 
data (Tot A in Table 3). This led us to the conclusion that 
the accuracy depends on the environmental features, as the 
filters consistently produced results very close to each 
other.  

Several studies tested UWB technology in various 
environments, using different techniques. In (Barral et al. 
2019b), Pozyx technology was utilized to track a forklift in 
20x20 areas of a warehouse, achieving real-time positioning 
accuracy of up to 13 cm. These results were obtained by 
employing a neural network, as well as inertial and optical 
sensors in addition to Pozyx, and then applying an 
extended Kalman filter to the data. The Pozyx system used 
in another study (Singh et al. 2023a) was tested in a 
warehouse of 5.6 * 11.3 m, with minimal interference. The 
authors used machine learning filters for sensor fusion, not 
only time of flight data from Pozyx but also inertial data, 

achieving a mean absolute error of 8 cm. In addition, Gnaś 
& Adamkiewicz, (2022) tested UWB technology in a 
university room 5*5 using the trilateration system and 
achieved an accuracy between 10 and 40 cm.  

We could improve accuracy by incorporating additional 
sensors, and applying different filters. 

This study has some limitations. Firstly, the number of 
tested paths was limited, which might not adequately 
represent the variety of real-world scenarios. Additionally, 
only two specific setups were considered, reducing the 
generalizability of the results. To address these limitations, 
future research should test a wider range of areas with 
different characteristics and use a greater variety of setups 
to enhance the robustness of the conclusions. 

7. Conclusion 

The performance of UWB localization techniques heavily 
depends on the setup and specific interferences present in 
the testing environment. The analyzed filters have been 
shown to increase the overall accuracy of measurements, 
with performance remaining quite similar among them. 
However, the exponential smoothing filter appears to be 
the best in terms of performance. Our results are similar to 
those reported in the literature, (Barral et al. 2019b), (Singh 
et al. 2023a), Gnaś & Adamkiewicz, (2022), and we can 
improve accuracy by utilizing additional inertial and optical 
sensors. Further investigations on better filtering and 
methods or different anchor placing points are needed to 
achieve better accuracy.  Future managerial applications 
could include the use of UWB technology to create digital 
twins of warehouses. This approach would allow for more 
precise and efficient management of resources and 
operations within warehouses, thus improving the 
optimization of logistics processes and the ability to 
respond to changes in supply and demand. 
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