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Abstract: Quantifying resilience in complex systems is crucial for resilience engineering and real-time decision-
making in the face of disturbances. The resilience curve, an emerging method, offers a promising approach to 
quantify resilience and visualize system behavior post-disturbance. This curve is based on real-time data from 
embedded IoT sensors, providing insights into system performance and aiding in timely responses to disruptions. 
However, a significant gap exists in formulating a standard method to visualize the resilience curve due to the 
inherent noise in real-world data. Since employing each method can result in different values for resilience KPIs, 
especially for performance loss, highly cited methods in the literature will be utilized for this case study and 
eventually compared. The case study is conducted using open-source maintenance data from water pumps in a small 
area far from a major town, which experienced 7 failures during the study period. According to the results, the SVM 
works better than Polyfit and traditional methods (Line Plot and Rolling Average) in representing the behavior of the 
system in the presence of noise and complex systems. The findings of this study contribute to the advancement of 
resilience engineering in emerging cyber-physical systems, providing valuable insights for improving system 
robustness and responsiveness in the face of unforeseen events.  
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1. Introduction 

Traditionally, risk management has been the primary tool 
for safeguarding complex systems and critical 
infrastructures (Pesch-Cronin and Marion, 2016). This 
approach focuses on identifying and mitigating potential 
threats to ensure continued functionality. However, in an 
increasingly interconnected and dynamic world, 
unexpected events and cascading failures pose a 
significant challenge. Here, resilience – the ability to 
absorb disturbances, adapt, and recover – becomes crucial 
(Aghazadeh Ardebili et al., 2023). By incorporating 
resilience alongside risk management, we can move 
beyond simply preventing disruptions to ensuring these 
systems can bounce back effectively, minimizing 
downtime and societal impact. This shift is crucial for 
safeguarding the vital services that underpin modern 
society (Liu and Song, 2020). Quantifying the resilience of 
complex systems, like critical infrastructure networks, is 
essential for ensuring their continued functionality in the 
face of disruptions. In this respect, resilience curves can 
play a key role. These curves act as powerful tools for 
quantifying a system's resilience by charting its 
performance over time before, during, and after a 
disruptive event (Fang et al., 2016; Liu and Song, 2020). By 
analyzing the shape of the curve, we can gain valuable 
insights into the system's ability to withstand stress, adapt 
to changing conditions, and ultimately return to an 
acceptable level of operation. This information is crucial 
for informing mitigation strategies, resource allocation, 

and prioritizing investments to bolster the overall 
resilience of these vital systems. 

A resilience curve is built from real-time data produced by 
embedded IoT sensors, it then provides insights into 
system performance and supports timely responses to 
disruptions. However, formulating a standard method to 
visualize the resilience curve is problematic because of the 
inherent noise in real-world data. In particular, Several 
Statistical and AI Methods for fitting polylines are 
especially available to smooth noisy data. Still, although 
these methods are well-studied in signal processing, and 
the application of different methods are formulated based 
on use case scenarios, they are relatively unexplored in 
resilience engineering. The study presented here aims to 
answer the following research questions (RQs):  

RQ on Accuracy and Generalizability: How well do AI-
based methods for resilience curve estimation compare to 
traditional statistical methods in terms of accuracy and 
capturing the true system behavior under stress?  

RQ on Data Dependency: Can AI models provide 
interpretable insights into the factors influencing system 
resilience, something statistical methods might struggle 
with, in complex systems? 

To answer the questions, a preliminary comprehensive 
state-of-the-art review of methodologies for constructing 
Resilience curves (R-Curves) was conducted. However, a 
significant gap in drawing R-curves of complex and noisy 
datasets is identified in the domain of resilience 
engineering; therefore, a systematic literature review is 
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conducted (detailed in Section 3) with the aim to select the 
best tools for fitting the polyline curve, apply to a case 
study, and compare the results to answer the research 
questions. Afterward, Section 4 introduces a case study 
with real-world industrial pump maintenance data and 
presents findings from Exploratory Data Analysis (EDA). 
Section 5 discusses results from both statistical and AI-
based methods. Finally, Section 6 acknowledges the 
limitations of the study and outlines future research 
avenues. 

2. Preliminary review of related studies 

This study focuses on the possibility of constructing 
resilience curves in the context of complex systems 
(Salomon et al., 2020). A case study concerning industrial 
water pump maintenance was considered as a valuable 
example of such a system. Indeed, industrial pump 
systems are critical components within various industries, 
and their resilience directly impacts production efficiency 
and safety (Tabandeh et al., 2024). In addition, real-life 
data from pump stations are collected with sensors and 
are naturally very noisy.  

In today's world of interconnectedness and unforeseen 
disruptions, complex systems like water networks face 
ever-increasing challenges. Thus, the concept of resilience 
plays an important role. Resilience refers to a system's 
ability to absorb disturbances, adapt to changing 
conditions, and ultimately return to an acceptable level of 
operation. Quantifying resilience is crucial, and this is 
where resilience curves come in (Simonovic and 
Arunkumar, 2016a). These curves act as a powerful tool 
by charting a system's performance over time: before, 
during, and after a disruptive event (Venkateswaran V et 
al., 2021). By analyzing the  shape of the curve, we can 
gain valuable insights into the system's ability to withstand 
stress and bounce back effectively (Li and Mostafavi, 
2024). This information is essential for prioritizing 
investments, implementing mitigation strategies (HAN et 
al., 2021), and ensuring the continued functionality of 
these vital systems (Jiang et al., 2023). Figure 1 shows an 
example of a resilience curve. As the sample curve shows, 
it is easy to interpret the curve if it is smooth and without 
noise. Key points like tR and ym are readily identified in 
such curves.  

In Figure 2 the area above the resilience curve is 
highlighted. This area is a resilience measure that shows 
Loss of Functionality. The calculation of this area is 
crucial because it provides a resilience KPI that can be 
used to measure the system's performance. This 
underscores the importance of selecting an appropriate 
tool for curve construction. 

There are established statistical methods for constructing 
resilience curves. One common technique is hysteretic 
loop analysis, which compares the system's performance 
before and after a disruption (Fraedrich et al., 2016). 
Another approach utilizes the area over the curve (AOC) 
method, where the area below the curve on the 
performance graph represents the system's resilience loss 
during the disruption (Jiang et al., 2023; Lan et al., 2024; Li 
and Mostafavi, 2024; Liao and Ji, 2020; Simonovic and 

Arunkumar, 2016b; Venkateswaran V et al., 2021; Wang et 
al., 2023). Additionally, time-to-recovery metrics measure 
the duration it takes for the system to return to normal 
operation. Statistical models like the Weibull distribution 
can also be used to estimate the probability of failure and 
recovery times (Sartori et al., 2009).  

The rise of Artificial Intelligence (AI) has opened new 
avenues for analyzing complex systems. AI-based 
methods offer several potential advantages for Polynomial 
curve fitting (Levy, 1959) and eventually for constructing 
resilience curves. Unlike traditional methods, novel 
techniques for Polynomial curve fitting (Motulsky and 
Ransnas, 1987) can effectively handle large, complex 
(Yang et al., 2009) and real-life noisy datasets (Arora and 
Khot, 2002) with higher accuracy (Li and Li, 2020). 
However, no study explores the possibility of constructing 
resilience curves with noisy data without losing 
information on the behavior of the system.  

Figure 1 Sample resilience curve (performance-
time)(Madni et al., 2020) 

Figure 2 Functionality Loss as a Resilience KPI (R-KPI) 

Additionally, the computational cost (Elmousalami, 2020) 
and data requirements (Roh et al., 2021) of AI methods 
need further investigation. Nevertheless, these aspects 
have not been studied in the domain of resilience 
engineering. In order to contribute to filling these gaps, a 
systematic review (Section 3) is conducted to identify 
suitable methods of curve fitting from complex datasets in 
other domains (mathematics, physics, etc.), that could be 
used for the construction of resilience curves. This article 
is a preliminary investigation that shows a promising way 
to address the issue, but it also calls for potential future 
avenues of research. 

3. Method and Tools  

3.1 Suitable Methods Identification 

This section aims to identify methodologies that show 
potential to be used for constructing resilience curves for 
complex systems. We will explore two approaches: 
established statistical methods and emerging AI-based 
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techniques. The data utilized for curve construction will 
be described, followed by a comprehensive explanation of 
the implementation process for each method.  

In order to identify methods and tools used by researchers 
and practitioners to fit piecewise linear curves (polylines) 
to data, in the resilience engineering domain, a systematic 
literature review was carried out. The review process, 
including screening criteria and results, is outlined in 
Error! Reference source not found.. Before excluding 
studies from non-engineering fields like medicine, biology, 
astronomy, and psychology, the initial search yielded over 
78,000 articles. The first screening highlighted a significant 
gap in the body of knowledge regarding resilience 
quantification through curve fitting. In fact, only 41 
articles, representing a small fraction (less than 0.1%) of 
the retrieved studies, focused on the engineering domain. 
This suggests a need for further research on methods for 
fitting polylines to represent and analyze resilience data. 

After thoroughly reviewing the selected articles, three 
methods emerged as the most utilized and cited 
approaches for assessing the resilience of systems. A 
critical gap exists in the literature regarding resilience 
curve construction methods.  While over 41% of the 
reviewed articles (17 documents) utilize resilience curves, 
the majority of them do not disclose their curve-fitting 
methods. In these articles, Simple Line Plot and Rolling 
Average are the two most common methods for 
constructing resilience curves, which are used in literature. 
Because of the small number of papers after the 
screening, the final step of the systematic literature review 
employed 3 snowballing techniques (last step in Error! 
Reference source not found. under outline of the steps) 
to identify the most effective methods for constructing 
resilience curves.  This technique leverages keywords from 
the 17 reviewed articles, along with forward and backward 
snowballing through references and citations. 

After snowballing, we identified documents that 
implemented AI-based and statistical/numerical methods 
for polyline curve fitting, mostly utilizing six different 
methods (see Figure 3 under the Documents column in 
the last step). In the AI-based methods category, 540 
documents employed Support Vector Machine (SVM), 
while in the statistical/numerical methods category, 
Polyfit was selected in 378 documents. The forthcoming 
subsections will provide detailed explanations of these 
highly cited methods. 

3.2 Theoretical Foundations for the Selected Methods 

The systematic literature review yielded two AI based and 
statistically grounded methods for resilience curve 
construction that are suitable for real-time applications 
with noisy data. These methods are Support Vector 
Machine (SVM), an AI-based technique, and Polynomial 
Regression (Polyfit), which is rooted in statistical 
methodologies. 

3.2.1 Support Vector Machine (SVM) 

Support Vector Machine is a powerful machine learning 
algorithm used for both classification and regression tasks. 
It works by finding the optimal hyperplane that best 

separates data points belonging to different classes or 
predicts continuous outcomes(Noble, 2006). SVM is  

Figure 3 Systematic Literature Review (SLR) process 

particularly effective in high-dimensional spaces and is 
widely used (Pisner and Schnyer, 2020). Polyline Fitting 
with SVM (Jiang et al., 2021; Luo, 2012) includes the 
following steps: Data Preparation Prepare the dataset 
comprising input features (independent variables) and 
target values (dependent variables). Feature 
EngineeringExtract relevant features from the dataset to 
effectively represent the relationship between inputs and 
outputs. Model Training Train the SVM model using the 
dataset. In polyline fitting, the SVM model is trained to 
find the optimal line or curve that best fits the data points. 
Model Evaluation Assess the performance of the trained 
model using appropriate metrics to ensure its effectiveness 
in fitting the polyline to the data. Prediction Utilize the 
trained SVM model to predict output values for new input 
data points. Data Preparation: Prepare the dataset 
comprising input features (independent variables) and 
target values (dependent variables). Feature Engineering: 
Extract relevant features from the dataset to effectively 
represent the relationship between inputs and outputs. 
Model Training: Train the SVM model using the dataset. In 
polyline fitting, the SVM model is trained to find the optimal line 
or curve that best fits the data points. Model Evaluation: Assess 
the performance of the trained model using appropriate metrics 
to ensure its effectiveness in fitting the polyline to the data. 
Prediction: Utilize the trained SVM model to predict output 
values for new input data points.  

The core mathematical concepts underlying SVM include 
the objective function, decision function, and kernel trick 
(Gholami and Fakhari, 2017, p. 27). The objective 
function of SVM aims to find the optimal hyperplane that 
maximizes the margin between the classes while 
minimizing classification errors. It is formulated as: 

 
This equation balances the margin width (controlled by 
∣∣w∣∣) and the classification error (controlled by ξi) using 
the regularization parameter C. It ensures that the SVM 
model finds the best possible decision boundary for the 
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given data. The decision function of SVM computes the 
output value for a given input vector.        f(x)= w * x + b  

Where w represents the weight vector, b denotes the bias 
term, and x is the input vector. The decision function 
determines which side of the hyperplane a data point lies 
on, thus classifying it into one of the classes. These 
mathematical formulations and steps outline how SVM 
can be applied to polyline fitting tasks to construct the 
resilience curves, providing a robust and effective method 
for capturing complex relationships in data.  

3.2.2 Polynomial Regression (Polyfit) 

Polynomial regression is a statistical method used to fit a 
polynomial curve to a set of data points. It is an extension 
of linear regression and is particularly useful when the 
relationship between the independent and dependent 
variables is nonlinear (Vrdoljak and Mostar, 2013). 
Polynomial regression works by minimizing the sum of 
squared errors between the observed and predicted values, 
similarly to linear regression. The degree of the 
polynomial determines the complexity of the curve, with 
higher degrees allowing for more flexible curve fitting. of 
the Steps of the method (Eubank and Speckman, 1990; 
Kowsher et al., 2020; Ostertagová, 2012) are: Data 
Preparation: Prepare the dataset consisting of input features 
(independent variables) and target values (dependent 
variables). Feature Engineering: No specific feature 
engineering is required for polynomial regression. 
However, it is essential to ensure that the data is properly 
cleaned and preprocessed to remove any outliers or 
missing values. Model Training: Train the polynomial 
regression model using the prepared dataset. The model 
aims to find the coefficients of the polynomial equation 
that best fits the data points. The polynomial regression 
equation takes the form:     

Where y is the dependent variable, x is the independent 
variable,  are the coefficients of the 
polynomial terms, and n is the degree of the polynomial. 

Model Evaluation: Assess the performance of the trained 
polynomial regression model using appropriate evaluation 
metrics such as mean squared error (MSE) or Rsquared 
(R^2) coefficient. This step helps determine how well the 
polynomial curve fits the data and whether the model is 
suitable for making predictions. Prediction: Utilize the 
trained polynomial regression model to predict output 
values for new input data points. The predicted values are 
obtained by substituting the input values into the 
polynomial equation obtained during the training phase.  

In summary, polynomial regression fits a polynomial 
curve to the data points by minimizing the sum of squared 
errors. The degree of the polynomial determines the 
complexity of the curve, allowing for flexible curve fitting. 
This method is useful for modeling nonlinear 
relationships between variables and can be applied in 
various fields such as economics, engineering, and 
biology. 

4.Case Study 

The case study utilizes data collected from 52 sensors 
embedded in a centrifugal pump (however the data is 
collected correctly from 49 for 152 days). The dataset 
comprises two types of data: one related to the driving 
equipment for the motor and the other related to the 
driven equipment for the pump. The dataset is an open 
dataset available in Kaggle data science communities’ 
repositories (More than 20 opensource Exploratory Data 
Analysis (EDA) is available for the mentioned dataset in 
Kaggle)1.  

The parameters that the sensors are measuring are Motor 
and pump, Casing Vibration, Frequency, Speed, Current, 
Active Power, Apparent Power, Reactive Power, Shaft 
Power, Phase Current, Coupling Vibration, Phase Voltage, 
Impeller Speed, Inlet Flow, Discharge Flow, Lube Oil 
Overhead Reservoir Level, Lube Oil Return Temp, Thrust 
Bearing Active Temp, Radial Bearing Temp, Thrust 
Bearing Inactive Temp, Inlet Pressure, Discharge 
Pressure. (Some parameters are measured in more than 
one place with different sensors.) different types of the 
sensors are employed like accelerometers, strain gauges, 
temperature gauge, pressure gauge etc.  

4.1 Exploratory Data Analysis (EDA) 

The first step is a comprehensive EDA to identify general 
patterns in the data, missing data, outliers and features of 
the data that might be unexpected.  

Sensor with null values >5% will be dropped. Moreover, 
the following sensors follow the same pattern: Sensors: 
43/42/41/40/39/38, Sensors: 35/34/33/32/31/30, 
Sensors: 29/28/27/26/24/23, Sensors: 
22/21/20/19/18/17, Sensors: 16/14, Sensors: 12/11/10, 
Sensors: 09/08/07/05, Sensors: 04/00, Sensors: 
01/02/03. Then LGB Feature importance2 using Python 
Scikit-learn and Spark along with XBOOST3 is used to 
extract the feature importance. The selected feature (that 
is related with the performance of the system) with the 
highest importance will be used for the resilience curve 
construction in the next section. Figure 4 shows 
SENSOR_06, which is measuring Motor Active Power is 
of paramount importance because the other sensors that 
gained higher score, are not directly representing the 
performance of system; since it is measuring the power, it 
is the best index for the performance of the system. 
Therefore, this parameter is selected to construct the 
Resilience curve.  

The light blue line in Figure 4 shows the status of the 
system over the lifecycle including the number of the 

                                                           
1 https://www.kaggle.com/datasets/nphantawee/pump-
sensor-data/data 
2 https://towardsdatascience.com/ The Mathematics of 
Decision Trees, Random Forest and Feature Importance 
in Scikit-learn and Spark/ 
3 XGBoost is a boosting algorithm that uses bagging, 
which trains multiple decision trees and then combines 
the results. XGBoost Python is one of the most popular 
machine learning frameworks among data scientists. 
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times that full failure happened. The first Failure and 
recovery will be used for the Resilience Curve 
construction. Since the focus of this article is comparing 
different methods for construction of the curves, one 
failure will be used; however, in the real-world resilience 
quantification, since the resilience is scenario-based 
approach, all the failures should be assessed differently 
based on the reason of the failure. Figure 4 shows the 
time of the failures in the operation lifecycle of the pump. 
Also, it shows the difference in the noise in different 
sensors can be different. This highlights the importance of 
selecting the parameters that we want to use for resilience 
curve construction. Because less noise will help to have 
smoother Resilience Curve. 

Figure 3 The relative importance of parameters (top 15) 

In the next section the resilience curves constructed with 
different methods with a focus on the 5th failure (because 
it has more fluctuation after disturbance, therefore it can 
be a clear sample of irregular behavior of the system) in 
Figure 6 are shown and discussed.  

5.Results and Discussion 

If the data exhibits minimal noise and fluctuations, a 
straightforward traditional approach of depicting the 
resilience curve is by connecting all data points with a line. 
However, in the presence of noise and high complexity, a 
simple line plot can become confusing. In such cases, 
employing a moving average can offer a clearer 
representation of the resilience curve. The line plot and a 
plot generated using rolling averages with a moving 
window are shown in Figure 5. It is evident from the 
Figure 5 that the resilience curve appears less smooth with 
the presence of noise, thereby complicating the 
interpretation of the system's behavior.  

As depicted in Figure 5, the line plot fails to construct a 
meaningful resilience curve for all the disturbances. 
Nevertheless, for the initial four disturbances 
characterized by lower noise levels, the moving average 
proves to be a suitable method. But the moving average 
method falters in accurately depicting the behavior of the 
system during the 5th disturbance demonstrating a longer 
drop in performance. Furthermore, during the last two 
failures, the moving average fails to capture the dramatic 
drop in performance. This shows that traditional statistical 
methods are not always accurate in capturing the true 
system behavior. 

Figure 6 shows the curves that are fitted by SVM (up) 
with polynomial kernel of degree 10 and a low 
regularization parameter (C=1000), and Polyfit (down) 
with the Degree of Freedom=10. Both methods in Figure 

6 work better than traditional methods like Moving 
Average and Line Plot; especially the AI-based method 
shows better capacity in representing the behavior of the 
system after disturbance compared to statistical method. 
The differences in the two methods can be discussed in 
terms of accuracy and capturing the true system behavior 
regarding the resilience KPIs that are shown in Figure 1. 
These results address RQ1. 

Figure 4 Up: Sensor_10(Motor Phase Current A) Down: 
The collected data for Sensor_06(Motor Active Power) 
along with operation status of the system (0 in light blue 
line means normal operation with no fault). The values are 
normalized in both axes.  

Figure 5 Line plot in orange and moving average plot in 
blue (The failures are numbered in red and the drop after 
2018-08 is an outlier). The values are not normalized. 

There are three main differences between the results. 
Statistical methods struggle to accurately represent the 
behavior of complex systems with noisy data. In contrast, 
Support Vector Machines (SVMs) offer a powerful AI 
approach that provides interpretable insights into the 
measurable factors influencing system resilience. This 
advantage is particularly pronounced in complex systems, 
where statistical and traditional methods may encounter 
difficulties: the results of the comparison answer RQ2.  

For noisy data, SVMs excel at pinpointing the start of a 
disturbance, and the system's return to stability with 
greater precision. This enhanced accuracy translates to 
more precise calculations of recovery time after 
disruptions. Furthermore, SVMs demonstrate superior 
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stability compared to methods like Polyfit, especially when 
system performance stabilizes at either the minimum 
performance level or post-recovery. Additionally, SVMs 
offer a more efficient representation of functionality loss 
(Figure 2) compared to traditional statistical methods. 

Figure 6 Resilience Curve of Sensor_10. Up: Fitted by 
SVM, Down: Fitted by Polyfit 

6.Limitations  

Two key limitations of this study emerged during the case 
study analysis. Firstly, the possibility of exploring a hybrid 
solution, combining statistical and AI-based methods, was 
not investigated. Secondly, the potential of the employed 
methods to be integrated with AI based real-time anomaly 
detection services was not explored.  

7.Conclusion and Future Studies 

The results show that traditional methods struggle with 
noisy data in complex systems. The Polyfit and Support 
Vector Machines (SVMs) showed better results than 
traditional methods (Line Plot and Rolling Average); in 
particular, the AI-based approach provides clearer insights 
into behavior of the system after disturbance, especially 
valuable for Critical Infrastructures. SVMs offer improved 
precision in noisy data, leading to more accurate 
calculations of 3 Resilience-KPIs: Recovery Time, 
Minimum Performance Level, and Functionality Loss. 

In future studies, the authors aim to delve into the efficacy 
of AI-based methods in managing the inherent noise and 
uncertainty within complex system data, particularly 
concerning the estimation of resilience curves. This 
exploration seeks to assess the ability to navigate the 
intricacies of complex data sets. Additionally, a key focus 
will be on understanding how AI methods tackle the 
challenge of identifying and integrating early warning 
signals indicative of potential system collapse, a task that 

traditional methods may overlook due to their inherent 
limitations. 

Another area of interest for future research involves the 
development of hybrid approaches that capitalize on the 
respective strengths of both traditional and AI-based 
methods. These hybrid solutions aim to create resilience 
curves that are not only robust but also highly 
informative. This combination seeks to enhance the 
accuracy and reliability of resilience curve estimations. 
This exploration into hybrid methodologies represents a 
promising avenue for advancing the field of resilience 
analysis and fostering more comprehensive insights into 
complex systems. 
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