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Abstract: This paper extends the Flexible and Interactive Tradeoff (FITradeoff) method by eliciting unknown marginal 
value functions in a robust ordinal regression (ROR) framework. This method asks a Decision Maker (DM) to compare 
different values alongside a criterion, determining if their difference is larger or smaller than a threshold to find, at the 
end, the best alternative in a set. In each step, a representative value function is computed to identify which values to 
compare, their threshold, and to provide visual feedback on the marginal value functions. Compared to FITradeoff 
the proposed method does not require ex-ante knowledge of the marginal value functions, a strong assumption in the 
original model. A case study on battery-based energy storage systems and one on supplier selection are provided to 
verify the feasibility and effectiveness of the method. 
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1.1. Introduction 

Battery Energy Storage Systems (BESS) present solutions 
to numerous challenges associated with renewable 
technologies; these systems have evolved into 
indispensable components within modern power grids 
thanks to their flexibility efficiency. Their primary 
advantage lies in their rapid response to changes in demand, 
whether by storing excess electrical energy or supplying 
additional power as needed. This allows BESS to promptly 
address fluctuations in the power grid, contributing to the 
grid frequency stability and ensuring a continuous high-
quality power supply. Overall, BESS facilitate the 
deployment of renewable energy, helping to reduce carbon 
emissions and lowering costs for businesses and 
households (Suberu et al. 2014; Luo et al. 2015). The 
landscape of energy storage batteries encompasses 
different technologies (Dunn et al. 2011; Poullikkas 2013; 
Alotto et al. 2014), such as lead-acid batteries, lithium-ion 
batteries, supercapacitors, nanobatteries, vanadium redox 
flow batteries, sodium-sulphur batteries, and so on. 
Different BESS exhibit different performances from an 
environmental, technological, safety-oriented, and cost-
oriented point of view; hence it is necessary to develop an 
assessment method to select the appropriate BESS. 
Multicriteria decision-making (MCDM), also known as 
multi-objective decision-making with limited alternatives, 
chooses the optimal alternative from a set, or ranks 
alternatives, considering multiple criteria. The multiple 
additive utility theory (MAUT) refers to a subset of these 
MCDM methods, assessing the alternatives values by 
weighting and summing individual values on a set of criteria 
(Keeney and Raiffa, 1993; Shafiee and Abouee-Mehrizi, 
2010). In the context of selecting BESS, MCDM in general 
and MAUT in particular emerge as suitable frameworks 
(Zhao et al. 2018; Zhao et al. 2019). 

Criteria weights are crucial for evaluating inter-criteria 
relationships in any MCDM method based on an additive 
model (Weber and Borcherding 1993; Riabacke et al. 2012). 
The literature on these methods investigates how weights 
incorporate scale constants and trade-offs, and how they 
reflect the decision-maker (DM) preferences (Saaty, 1980; 
Edwards and Barron, 1994; Eisenführ et al., 2010; Rezaei, 
2015). Among the MCDM methods relying on weights, the 
Analytic Hierarchy Process (AHP) is one of the most 
widely adopted. It determines the relative importance of 
each criterion by constructing a judgment matrix and 
performing pairwise comparisons (Saaty, 1980). The best-
worst method (BWM) is a variant of AHP and addresses 
the large number of pairwise comparisons required to 
determine weights, which generate a computational burden 
and complicate the overall process (Rezaei, 2015). Edwards 
and Barron (1994) introduced in 1994 variations of the 
Simple Multi-Criteria Rating Technique (SMART), such as 
SMART Exploiting Ranks (SMARTER) and SMART 
Using Swings (SMARTS), to explore the relationship 
between criteria weights and their respective value 
functions. In the context of handling imprecision in 
MCDM, Mustajoki et al. (2005) proposed interval 
SMARTER and SMARTS to address questions related to 
weight ratios using intervals. Overall, eliciting weights is 
challenging and often requires a level of precision that the 
DM struggles to provide. The procedures to determine 
these weights themselves are often error-prone, especially 
in situations where the DM has uncertain preferences or 
lacks a complete understanding of the process. To address 
these challenges, de Almeida et al. (2016) proposed in 2016 
the Flexible and Interactive Tradeoff (FITradeoff) method 
with a fixed marginal value function for each criterion. To 
remove this last assumption, it is possible to apply the 
concept of Robust Ordinal Regression (ROR) (Greco et al. 
2008; Greco et al. 2010; Greco et al. 2011; Balugani et al. 
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2021; Lolli et al. 2024), which considers all feasible marginal 
value functions at the same time. This inclusion is aimed at 
enhancing the flexibility and robustness of the model. In 
this context, a novel method, combining FITradeoff and 
ROR, is presented for the flexible elicitation of marginal 
value functions that satisfy incomplete preference 
information within an additive model. 

The paper's content is organized as follows: in Section 2, 
we provide an overview of some fundamental ROR 
concepts; in Section 3, we introduce a novel approach 
called robust FITradeoff multicriteria method; Section 4 
demonstrates the application of the proposed method in 
the selection of battery-based energy storage systems and 
in the selection of suppliers; Section 5 concludes the paper 
with a summary of the findings and a discussion on future 
research directions. 

2. Robust Ordinal Regression 

Greco et al. (2008) introduced ROR in 2008. ROR 
examines the model parameters alignment with preference 
relations among alternatives. Given: 

• 𝐴 = {𝑎1, … , 𝑎𝑛}, a set of alternatives. 

• 𝐴𝑅 = {𝑎1
∗, . . , 𝑎𝑘

∗ }, a set of reference alternatives, 

with 𝐴𝑅 ⊆ 𝐴. 

• 𝐶 = {𝑐1, … , 𝑐𝑚}, a set of criteria. 

• For each alternative 𝑎𝑖  and criterion 𝑐𝑗 , 𝑥𝑖𝑗 ∈ 𝑅 

is an objective assessment on that criterion on 

that alternative; the greater 𝑥𝑖𝑗  the more desirable 

is alternative 𝑎𝑖 is on criterion 𝑐𝑗 . 

• For each criterion 𝑗 𝑣𝑗  is a value function such 

that 𝑣𝑗(𝑥𝑖𝑗) ∈ [0,1]. 

The DM provides a partial preorder on 𝐴𝑅 . They can, for 

example, assert that 𝑎𝑘
∗  is at least as good as 𝑎𝑖

∗ (i.e., 𝑎𝑘
∗ ≽

𝑎𝑖
∗), or declare a strict preference for 𝑎𝑘

∗  over 𝑎𝑖
∗ (i.e., 𝑎𝑘

∗ ≻
𝑎𝑖

∗). The additive value function, evaluating all the marginal 
value functions, is expressed, for each alternative, as: 

𝑉(𝑎𝑖) = ∑ 𝑣𝑗(𝑥𝑖𝑗)
𝑚

𝑗=1
 

(1) 

normalized between 0 and 1: 

∑ 𝑚𝑎𝑥𝑖 (𝑣𝑗(𝑥𝑖𝑗))
𝑚

𝑗=1
= 1 

(2) 

𝑚𝑖𝑛𝑖 (𝑣𝑗(𝑥𝑖𝑗)) = 0 ∀𝑐𝑗 ∈ 𝐶 (3) 

ROR utilizes the DM's partial preorder as input data to 
generate sets of compatible marginal value functions. These 
value functions are subject to the following constraints: 

𝑉(𝑎𝑘
∗ ) ≥ 𝑉(𝑎𝑖

∗) + 𝜀 𝑖𝑓 𝑎𝑘
∗ ≻ 𝑎𝑖

∗ (4) 

𝑉(𝑎𝑘
∗ ) = 𝑉(𝑎𝑖

∗) 𝑖𝑓 𝑎𝑘
∗ ∼ 𝑎𝑖

∗ (5) 

𝑣𝑗(𝑥𝑘𝑗) ≥ 𝑣𝑗(𝑥𝑖𝑗) 𝑖𝑓 𝑥𝑘𝑗 ≥ 𝑥𝑖𝑗  (6) 

𝑣𝑗(𝑥𝑘𝑗) = 𝑣𝑗(𝑥𝑖𝑗) 𝑖𝑓 𝑥𝑘𝑗 = 𝑥𝑖𝑗  (7) 

∑ 𝑚𝑎𝑥𝑖 (𝑣𝑗(𝑥𝑖𝑗))
𝑚

𝑗=1
= 1 

(8) 

𝑚𝑖𝑛𝑖 (𝑣𝑗(𝑥𝑖𝑗)) = 0 ∀𝑐𝑗 ∈ 𝐶 (9) 

where 𝜀 is an arbitrarily small positive value. If no value 
function can satisfy such constraints the DM partial 
preorder is inconsistent. 

In ROR it is possible to identify necessary and possible 

weak preference relations, 𝑎𝑘 ≽𝑁 𝑎𝑖  and 𝑎𝑘 ≽𝑃 𝑎𝑖 

respectively, for 𝑎𝑘 ∈ 𝐴  and 𝑎𝑖 ∈ 𝐴  . These preference 
relations are defined as: 

• 𝑎𝑘 ≽𝑁 𝑎𝑖  if 𝑉(𝑎𝑘) ≥ 𝑉(𝑎𝑖)  for every set of 
marginal value function compatible with the 
previous constraints. 

• 𝑎𝑘 ≽𝑃 𝑎𝑖 if 𝑉(𝑎𝑘) ≥ 𝑉(𝑎𝑖) for at least one set of 
marginal value function compatible with the 
previous constraints. 

3. The robust FITradeoff multicriteria method 

In this section we propose a robust FITradeoff model. We 
start by build a separate linear programming model for each 

alternative 𝑎𝑘 ∈ 𝐴: 

𝑚𝑎𝑥 ∑ 𝑣𝑗(𝑥𝑘𝑗)
𝑚

𝑗=1
 

(10) 

s.t. 

∑ 𝑣𝑗(𝑥𝑘𝑗)
𝑚

𝑗=1
≥ ∑ 𝑣𝑗(𝑥𝑖𝑗)

𝑚

𝑗=1
 ∀𝑎𝑖 ≠ 𝑎𝑘 

(11) 

𝑣𝑗(𝑥𝑖𝑗) ≥ 𝑣𝑗(𝑥𝑙𝑗) 𝑖𝑓 𝑥𝑖𝑗 ≥ 𝑥𝑙𝑗 (12) 

𝑣𝑗(𝑥𝑖𝑗) = 𝑣𝑗(𝑥𝑙𝑗) 𝑖𝑓 𝑥𝑖𝑗 = 𝑥𝑙𝑗  (13) 

∑ 𝑚𝑎𝑥𝑖 (𝑣𝑗(𝑥𝑖𝑗))
𝑚

𝑗=1
= 1 

(14) 

𝑚𝑖𝑛𝑖 (𝑣𝑗(𝑥𝑖𝑗)) = 0 ∀𝑐𝑗 ∈ 𝐶 (15) 

where the first constraint makes sure that alternative 𝑎𝑘 is 
potentially optimal compared to all the others. 

For each of these linear programming models, the existence 
of a solution is not guaranteed; if a solution exists, the 
corresponding alternative is potentially optimal; if not, the 
alternative cannot be optimal. We denote the set of 

potentially optimal alternatives as 𝐴𝑜𝑝𝑡  and the set of 

alternatives that cannot be optimal as 𝐴𝑑𝑜𝑚 . The sum of 

the value function differences between 𝐴𝑜𝑝𝑡  and 𝐴𝑑𝑜𝑚 
alternatives is used in a different linear optimization 
problem: 

𝑚𝑎𝑥 ∑ (∑ 𝑣𝑗(𝑥𝑘𝑗)
𝑚

𝑗=1
− ∑ 𝑣𝑗(𝑥𝑖𝑗)

𝑚

𝑗=1
)𝑎𝑘∈𝐴𝑜𝑝𝑡

𝑎𝑖∈𝐴𝑑𝑜𝑚

 
(16) 

s.t. 
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𝑣𝑗(𝑥𝑖𝑗) ≥ 𝑣𝑗(𝑥𝑙𝑗) 𝑖𝑓 𝑥𝑖𝑗 ≥ 𝑥𝑙𝑗 (17) 

𝑣𝑗(𝑥𝑖𝑗) = 𝑣𝑗(𝑥𝑙𝑗) 𝑖𝑓 𝑥𝑖𝑗 = 𝑥𝑙𝑗  (18) 

∑ 𝑚𝑎𝑥𝑖 (𝑣𝑗(𝑥𝑖𝑗))
𝑚

𝑗=1
= 1 

(19) 

𝑚𝑖𝑛𝑖 (𝑣𝑗(𝑥𝑖𝑗)) = 0 ∀𝑐𝑗 ∈ 𝐶 (20) 

to obtain a representative value function (Greco et al. 2011) 

𝑣𝑗
𝑟(𝑥𝑖𝑗) for each alternative 𝑎𝑖 and criterion 𝑐𝑗 . 

For each criterion 𝑐𝑗  the objective assessments 𝑥𝑖𝑗  are 

sorted and the differences between their representative 
value functions is computed: 

𝑣𝑘𝑖𝑗
𝑟 = 𝑣𝑗

𝑟(𝑥𝑘𝑗) − 𝑣𝑗
𝑟(𝑥𝑖𝑗) 

𝑖𝑓 𝑥𝑘𝑗 > 𝑥𝑖𝑗 𝑎𝑛𝑑 ∄ 𝑥𝑙𝑗: 𝑥𝑘𝑗 > 𝑥𝑙𝑗  𝑎𝑛𝑑 𝑥𝑙𝑗 > 𝑥𝑖𝑗  

(21) 

The largest difference divided in half is the reference point 

for a new constraint. Given this 𝑣𝑘𝑖𝑗
𝑟 , the DM is asked 

which one of the following inequalities holds: 

𝑣𝑗(𝑥𝑘𝑗) − 𝑣𝑗(𝑥𝑖𝑗) >
𝑣𝑘𝑖𝑗

𝑟

2
 

(22) 

or: 

𝑣𝑗(𝑥𝑘𝑗) − 𝑣𝑗(𝑥𝑖𝑗) ≤
𝑣𝑘𝑖𝑗

𝑟

2
 

(23) 

Consequently, the initial linear optimization problems 
become: 

𝑚𝑎𝑥 ∑ 𝑣𝑗(𝑥𝑘𝑗)
𝑚

𝑗=1
 

(24) 

s.t. 

∑ 𝑣𝑗(𝑥𝑘𝑗)
𝑚

𝑗=1
≥ ∑ 𝑣𝑗(𝑥𝑖𝑗)

𝑚

𝑗=1
 ∀𝑎𝑖 ≠ 𝑎𝑘 

(25) 

𝑣𝑗(𝑥𝑖𝑗) ≥ 𝑣𝑗(𝑥𝑙𝑗) 𝑖𝑓 𝑥𝑖𝑗 ≥ 𝑥𝑙𝑗 (26) 

𝑣𝑗(𝑥𝑖𝑗) = 𝑣𝑗(𝑥𝑙𝑗) 𝑖𝑓 𝑥𝑖𝑗 = 𝑥𝑙𝑗  (27) 

∑ 𝑚𝑎𝑥𝑖 (𝑣𝑖(𝑥𝑖𝑗))
𝑚

𝑗=1
= 1 

(28) 

𝑚𝑖𝑛𝑖 (𝑣𝑗(𝑥𝑖𝑗)) = 0 ∀𝑐𝑗 ∈ 𝐶 (29) 

and: 

𝑣𝑗(𝑥𝑘𝑗) − 𝑣𝑗(𝑥𝑖𝑗) ≥
𝑣𝑘𝑖𝑗

𝑟

2
+ 𝜀 

(30) 

or: 

𝑣𝑗(𝑥𝑘𝑗) − 𝑣𝑗(𝑥𝑖𝑗) ≤
𝑣𝑘𝑖𝑗

𝑟

2
 

(31) 

where 𝜀 is an arbitrarily small positive value. 

𝐴𝑜𝑝𝑡  and 𝐴𝑑𝑜𝑚  are updated according to the models’ 

solutions. If there is still more than one alternative in 𝐴𝑜𝑝𝑡,  
a new representative value function is computed using the 
linear optimization problem in Equations 16 to 21 with the 
new constraint (Equation 30 or Equation 31) included. 

New 𝑣𝑘𝑖𝑗
𝑟  differences between representative value 

functions are recomputed as well, but any 𝑣𝑘𝑖𝑗
𝑟  for which a 

constraint of type: 

𝑣𝑗(𝑥𝑘𝑗) − 𝑣𝑗(𝑥𝑖𝑗) >
𝑣𝑘𝑖𝑗

𝑟𝑜𝑙𝑑

2
 

(32) 

already exists is computed as: 

𝑣𝑘𝑖𝑗
𝑟 = 𝑣𝑗

𝑟(𝑥𝑘𝑗) − 𝑣𝑗
𝑟(𝑥𝑖𝑗) −

𝑣𝑘𝑖𝑗
𝑟𝑜𝑙𝑑

2
 

(33) 

This way the differences with active constraints are 

penalised. Once the largest 𝑣𝑘𝑖𝑗
𝑟  has been identified, if it is 

not one with an existing constraint, the DM is asked which 
inequality holds between Equations 22 and 23. If, instead, 

the largest 𝑣𝑘𝑖𝑗
𝑟  already has an existing constraint of 

Equation 32 type, the question becomes: 

𝑣𝑗(𝑥𝑘𝑗) − 𝑣𝑗(𝑥𝑖𝑗) >
𝑣𝑘𝑖𝑗

𝑟

2
+

𝑣𝑘𝑖𝑗
𝑟𝑜𝑙𝑑

2
 

(34) 

or: 

𝑣𝑗(𝑥𝑘𝑗) − 𝑣𝑗(𝑥𝑘𝑗) ≤
𝑣𝑘𝑖𝑗

𝑟

2
+

𝑣𝑘𝑖𝑗
𝑟𝑜𝑙𝑑

2
 

(35) 

Then the correct constraint is added to the linear 
optimization problems and the algorithm repeats until only 

one alternative in 𝐴𝑜𝑝𝑡  remains. With this algorithm, the 
marginal value functions space is gradually reduced with the 
addition of a constraint in each iteration. The convergence 
speed varies depending on the size of such a space. 

Summarizing, the proposed method follows these steps: 

• Step 1, identify the alternatives and criteria in the 
MCDM problem. 

• Step 2, construct and solve the linear optimization 
problems in Equations 10 to 15. This leads to a 
set of potentially optimal alternative and to a set 
of dominated alternatives. 

• Step 3, compute the representative value 
functions by solving the linear optimization 
problem in Equations 16 to 20. 

• Step 4, use the representative value functions to 
identify a question for the DM. 

• Step 5, assess the DM preference. 

• Step 6, construct and solve the new linear 
optimization problems in Equations 24 to 31. 
This leads to a set of potentially optimal 
alternative and to a set of dominated alternatives. 

• Step 7, if there is more than one potentially 
optimal alternative go back to Step 3. 
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4. The robust FITradeoff multicriteria method 

In this section two case studies are analysed, one on BESS 
and one on supplier selection, a problem traditionally 
tackled with MCDM methods. 

Give, for each case study, an objective assessment for each 
alternative and criterion, a theoretical DM is using either: 

• Linear marginal value functions. 

• Quadratic marginal value functions. 

• Square root marginal value functions. 

to evaluate the alternatives over the criteria. The linear 
marginal value functions are: 

𝑣𝑗(𝑥𝑘𝑗) =
𝑥𝑘𝑗 − 𝑚𝑖𝑛𝑖(𝑥𝑖𝑗)

𝑚𝑎𝑥𝑖(𝑥𝑖𝑗) − 𝑚𝑖𝑛𝑖(𝑥𝑖𝑗)
 

(36) 

The quadratic marginal value functions are: 

𝑣𝑗(𝑥𝑘𝑗) = (
𝑥𝑘𝑗 − 𝑚𝑖𝑛𝑖(𝑥𝑖𝑗)

𝑚𝑎𝑥𝑖(𝑥𝑖𝑗) − 𝑚𝑖𝑛𝑖(𝑥𝑖𝑗)
)

2

 

(37) 

The square root marginal value functions are: 

𝑣𝑗(𝑥𝑘𝑗) = √
𝑥𝑘𝑗 − 𝑚𝑖𝑛𝑖(𝑥𝑖𝑗)

𝑚𝑎𝑥𝑖(𝑥𝑖𝑗) − 𝑚𝑖𝑛𝑖(𝑥𝑖𝑗)
 

(38) 

and the proposed method is compared to a naïve one, 

where the largest 𝑣𝑘𝑖𝑗
𝑟  difference is not the one used to 

select which question to ask the DM. 

At the beginning of the naïve method two constraints are 
added to the Equations 10 to 15 for every couple of 

adjacent 𝑥𝑖𝑗 : 

𝑣𝑗(𝑥𝑘𝑗) − 𝑣𝑗(𝑥𝑖𝑗) > 0 = 𝑙𝑏𝑘𝑖𝑗  

𝑖𝑓 𝑥𝑘𝑗 > 𝑥𝑖𝑗 𝑎𝑛𝑑 ∄ 𝑥𝑙𝑗: 𝑥𝑘𝑗 > 𝑥𝑙𝑗  𝑎𝑛𝑑 𝑥𝑙𝑗 > 𝑥𝑖𝑗  

(39) 

𝑣𝑗(𝑥𝑘𝑗) − 𝑣𝑗(𝑥𝑖𝑗) ≤ 1 = 𝑢𝑏𝑘𝑖𝑗  

𝑖𝑓 𝑥𝑘𝑗 > 𝑥𝑖𝑗 𝑎𝑛𝑑 ∄ 𝑥𝑙𝑗: 𝑥𝑘𝑗 > 𝑥𝑙𝑗  𝑎𝑛𝑑 𝑥𝑙𝑗 > 𝑥𝑖𝑗 

(40) 

Where 𝑙𝑏𝑘𝑖𝑗 and 𝑢𝑏𝑘𝑖𝑗  are the lower and upper bound for 

the couple 𝑥𝑘𝑗 , 𝑥𝑖𝑗 . These constraints have virtually no 

effect in the initial linear optimization problem. 

In the naïve method the representative value functions are 

not computed, instead for every couple of adjacent 𝑥𝑘𝑗  and 

𝑥𝑖𝑗 : 

𝑣𝑘𝑖𝑗
𝑟 = 𝑢𝑏𝑘𝑖𝑗 − 𝑙𝑏𝑘𝑖𝑗  

𝑖𝑓 𝑥𝑘𝑗 > 𝑥𝑖𝑗 𝑎𝑛𝑑 ∄ 𝑥𝑙𝑗: 𝑥𝑘𝑗 > 𝑥𝑙𝑗  𝑎𝑛𝑑 𝑥𝑙𝑗 > 𝑥𝑖𝑗  

(41) 

The 𝑢𝑏𝑘𝑖𝑗  and 𝑢𝑏𝑘𝑖𝑗  associated to the largest 𝑣𝑘𝑖𝑗
𝑟  are 

reference points for a new constraint; the DM is asked 
which one of the following inequalities holds: 

𝑣𝑗(𝑥𝑘𝑗) − 𝑣𝑗(𝑥𝑖𝑗) ≥
𝑢𝑏𝑘𝑖𝑗 + 𝑙𝑏𝑘𝑖𝑗

2
+ 𝜀 

(42) 

or: 

𝑣𝑗(𝑥𝑘𝑗) − 𝑣𝑗(𝑥𝑖𝑗) ≤
𝑢𝑏𝑘𝑖𝑗 + 𝑙𝑏𝑘𝑖𝑗

2
 

(43) 

where 𝜀 is an arbitrarily small positive value. 

The correct constraint is then incorporated in the linear 
programming model and, if there is more than one 

alternative in 𝐴𝑜𝑝𝑡, Equation 41 is computed again as a new 
step starts. 

4.1. Case study 1, Battery Energy Storage Systems 

In this case study, we apply the proposed method to the 
field of BESS to validate its effectiveness. These systems 
play a crucial role in managing and optimizing electricity 
supply and demand across various applications, they store 
excess energy generated during periods of low demand 
releasing it during peak demand periods. BESS are utilized 
in diverse settings, including residential, commercial, 
industrial, and in electric vehicles. This paper considers five 
alternatives (battery technologies) (Guo et al. 2015; Min et 
al. 2015; Mexis and Todeschini 2020): 

• 𝑎1 Lithium-ion. 

• 𝑎2 Valve regulated lead-acid. 

• 𝑎3 Sodium-sulphur. 

• 𝑎4 Sodium nickel chloride. 

• 𝑎5 Vanadium redox flow. 

and eight criteria (performance measures) (Guo et al. 2015; 
Min et al. 2015; Mexis and Todeschini 2020): 

• 𝑐1 Damage on eco-system. 

• 𝑐2 Damage on human health. 

• 𝑐3 Damage on resource availability. 

• 𝑐4 Investment cost. 

• 𝑐5 Life cycle cost. 

• 𝑐6 Power capital cost. 

• 𝑐7 Technological performance. 

• 𝑐8 Maturity. 

The objective assessments for the five alternatives on the 
eight criteria are obtained from Bulut and ÖZCAN (2021) 
and outlined in Table 1. 

Table 1: Battery energy storage systems objective 

assessments. 

 𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 

𝑐1 5.75 1.15 2.08 1.18 4.54 

𝑐2 9.25 5.23 5.30 7.74 29.44 

𝑐3 8.25 9.71 6.39 7.13 15.11 

𝑐4 1300 300 340 350 790 

𝑐5 30 72 41 33 31 

𝑐6 2900 450 1850 350 1050 

𝑐7 0.3676 0.2260 0.3250 0.2830 0.2910 



XXIX SUMMER SCHOOL “Francesco Turco” – Industrial Systems Engineering  

𝑐8 7.80 9.40 7.90 7.70 7.17 

In this case study, criteria 𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝑐5, and 𝑐6 are cost 

criteria, while criteria 𝑐7  and 𝑐8  are benefit criteria. Cost 
criteria objective assessment signs are flipped before 
applying either the proposed or the naïve method. Table 2 
outlines the number of steps that each method needs to 
identify the best solution. 

Table 2: Number of steps required, in the BESS case study, 

by the proposed method and the naïve one. 

 Linear 
function 

Quadratic 
function 

Square root 
function 

Proposed 165 159 194 

Naïve 212 249 271 

The proposed method is more efficient in every instance. 

4.2. Case study 2, supplier selection 

In this case study we tackle a traditional MCDM problem, 
the selection of suppliers based on different criteria. Here 
ten suppliers are evaluated on seven criteria: 

• 𝑐1  Quality organization, which evaluates the 
supplier overall quality, its certifications, and the 
effectiveness of their quality control system. 

• 𝑐2 Service, which evaluates the supplier ability to 
keep due dates promises and supply the right 
amounts. 

• 𝑐3  Capability, which evaluates the supplier 
technology level and production capacity. 

• 𝑐4  Financial condition, which evaluates the 
supplier financial stability. 

• 𝑐5  Geographical condition, which measures the 
supplier geographic proximity. 

• 𝑐6  Reliability, which evaluates the supplier 
business experience, its references, and number of 
years of work together. 

• 𝑐7 Price, which evaluates the supplier sales prices. 

The objective assessments are obtained from (Birgün Barla 
2023) and reported in Table 3. 

Table 3: Suppliers objective assessments. 

 𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6 𝑐7 

𝑎1 59.6 64.0 55.0 80 100 61.0 40 

𝑎2 60.3 10.0 70.0 100 100 83.3 40 

𝑎3 51.3 44.0 55.0 80 100 66.6 40 

𝑎4 57.6 53.5 45.0 60 100 39.3 40 

𝑎5 59.6 22.5 80.0 100 100 58.3 40 

𝑎6 49.6 41.0 70.0 80 100 19.3 40 

𝑎7 58.3 45.5 51.5 60 100 35.6 40 

𝑎8 56.6 71.0 51.5 60 100 52.6 40 

𝑎9 59.0 71.0 83.0 60 100 36.6 40 

𝑎10 61.3 57.0 43.5 80 100 42.6 40 

In this case study, criteria 𝑐1 , 𝑐2 , 𝑐3 , 𝑐4 , 𝑐5 , and 𝑐6  are 

benefit criteria, while criteria 𝑐7  is a cost criterion. Cost 
criteria objective assessment signs are flipped before 
applying either the proposed or the naïve methodology. 
Table 4 outlines the number of steps that each method 
needs to identify the best solution. 

Table 3: Number of steps required, in the supplier selection 

case study, by the proposed method and the naïve one. 

 Linear 
function 

Quadratic 
function 

Square root 
function 

Proposed 265 131 123 

Naïve 363 223 226 

The proposed method is more efficient in every instance. 

5. Conclusions 

This paper introduces a robust FITradeoff multicriteria 
method, where the original FITradeoff multicriteria 
method (de Almeida et al. 2016) is integrated with an ROR 
(Greco et al. 2016) framework and applied to the selection 
of BESS (Bulut and ÖZCAN 2021) and to a traditional 
supplier selection problem (Birgün Barla 2023). In each 
step of the algorithm, we select a pair of alternatives, a 
criterion, a threshold, and ask the DM their preference. 
Compared to the original FITradeoff multicriteria method, 
this approach does not require ex-ante knowledge of the 
marginal value functions and, thus, reduces the number of 
assumptions. The method is compared to a naïve one in 
both case study, and it is proven more effective in every 
instance. One of the limitations of the proposed method is 
that, if the number of alternatives and criteria is too large, 
its convergence speed, measured by the number of steps 
required to reach a single solution, may degrade. To 
overcome this limitation, future research should consider 
different strategies to select questions for the DM. 
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