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Abstract: The advent of fully autonomous cars - level 5 automation, according to the Society of Automotive 
Engineers (SAE) - represents a paradigm shift in the entire mobility landscape. This article explores the critical aspect 
of safety evaluation for these vehicles, essential for their societal integration. In fact, ensuring passengers, 
pedestrians, and road users’ safety is crucial for adopting this technology. A major challenge for this safety evaluation 
is selecting suitable modelling tools to assess the complex dynamics of autonomous systems. This research rigorously 
evaluated various modelling approaches based on accuracy, scalability, and flexibility, finding Agent-Based Modelling 
(ABM) to be the most effective. Through ABM it is possible to simulate individual agents representing vehicles, 
pedestrians, and infrastructure, allowing realistic scenario simulations and safety performance evaluations. Analysing 
this tool, the aim is to highlight the various dynamics of autonomous driving systems and their implications for the 
future of transportation safety. Insights from this study inform policy, industry practices, and future research on 
autonomous vehicle safety, contributing to the ongoing discourse on their safety and reliability. 
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1.Introduction 

As we stand on the edge of a new era in transportation, 
the integration of Autonomous Driving Vehicles (ADVs) 
promises to reshape the landscape of mobility in 
profound ways. With advancements in artificial 
intelligence, sensor technology, and connectivity, these 
vehicles hold the potential to revolutionize how we move 
people and goods, offering unprecedented convenience, 
efficiency, and accessibility. Apart from the excitement 
surrounding this transformative technology, it is crucial to 
confront the challenges and the drawbacks that 
accompany its implementation, particularly concerning 
safety (Jafary et al., 2018). 

While the potential benefits are vast, safety remains a 
paramount concern. Despite the promise of reducing 
human error and minimizing accidents, the transition to 
autonomous driving is not without its risks: the complex 
interplay of factors such as unpredictable road conditions, 
technological limitations, and ethical dilemmas 
underscores the need for rigorous safety standards. 
Indeed, recent research has highlighted the inherent 
vulnerabilities and shortcomings of this technology. From 
cybersecurity threats to the ethical implications of 
decision-making algorithms, ADVs introduce a new set of 
challenges that must be addressed to ensure the safety and 
well-being of passengers, pedestrians, and other road users 
(Rezaei and Caulfield, 2021). Moreover, as AVs become 
increasingly integrated into our transportation systems, 
questions regarding liability, regulatory frameworks, and 
public acceptance arise.  

The transition to autonomous driving represents a 
paradigm shift in how we conceptualize and regulate 

transportation, requiring careful consideration of legal, 
ethical, and societal implications (de Leo and 
Miragliotta, 2023). 

Navigating the complex landscape of road safety requires 
a comprehensive understanding of the myriad factors 
influencing traffic dynamics and accident occurrence. 
From human behaviour to infrastructure design, each 
component plays a critical role in shaping the safety 
outcomes on our roadways. The integration of ADVs 
promises to revolutionize the traditional paradigms of 
road safety, offering innovative solutions to age-old 
challenges. Studies have delved into the intricate interplay 
of factors such as traffic light optimization, pedestrian 
crossings, and speed limits, employing simulation models 
to identify optimal parameters for enhancing road safety 
(Buivol et al., 2020). Moreover, the socioeconomic 
implications of road accidents underscore the urgency of 
proactive interventions, with projections indicating that 
without action, road traffic crashes could ascend to the 
7th leading cause of death by 2030 (Kataria, 2018). 

The focus on Vulnerable Road Users (VRUs) has emerged 
as a main point for understanding the social dimensions 
of road safety, shedding light on the influence of social 
inequities, habits, and environmental factors on accident 
occurrence (Fernandes et al., 2019). Furthermore, the 
development of sophisticated road safety measurement 
tools has enabled policymakers and researchers to assess 
the efficacy of interventions and regulatory frameworks, 
leading to evidence-based decision-making and targeted 
improvements (Sutandi, 2015). 

While the attention was traditionally on driver behaviour 
and on vehicle efficiency, emerging research highlights the 



XXIX SUMMER SCHOOL “Francesco Turco” – Industrial Systems Engineering  

importance of holistic approaches that consider a broader 
spectrum of factors. From tire-road friction to driver 
distraction, each variable contributes to the intricate 
tapestry of road safety dynamics (Alonso et al., 2018). 
Consequently, the challenge lies not only in identifying 
these factors but also in developing robust methodologies 
for measurement and analysis. Retrospective analysis, 
predictive interventions, and advanced statistical models 
offer valuable insights into the causal mechanisms driving 
road accidents, but data quality and validation remain 
ongoing challenges (Makarova et al., 2019) (Van 
Zuylen, 2008). 

This paper presents just a preliminary design for an ABM 
aimed at enhancing safety assessments for autonomous 
vehicles. The detailed technical aspects and concrete 
implementation proposals will be addressed in future 
research phases since The model is currently in the design 
phase, and detailed results and simulations will be 
presented in future publications as the development 
progresses. 

2.Review of the relevant literature 

2.1 ADVs & road safety 

Against this backdrop of complexity, ADVs emerge as a 
promising tool for enhancing road safety. By leveraging 
on cutting-edge technologies such as artificial intelligence 
and real-time sensor fusion, autonomous vehicles hold the 
potential to mitigate human errors and to introduce us in a 
new era of accident prevention (Alhajyaseen, 2023). 
Moreover, advancements in vehicle-to-vehicle 
communication and intelligent road infrastructure 
management systems offer further avenues for optimizing 
safety outcomes (Buivol et al., 2020). Embracing the 
potential of autonomous driving technology, it is 
imperative to acknowledge and address the challenges and 
ethical considerations that will follow this paradigm shift: 
cybersecurity vulnerabilities, moral dilemmas, and 
regulatory frameworks necessitate careful navigation to 
ensure the safe and responsible deployment of 
autonomous vehicles (Fernandes et al., 2019). 

The integration of autonomous vehicles into the 
transportation systems will conduct to a transformative 
era, promising unparalleled advancements in road safety. 
Conventional vehicles (CVs) have long been associated 
with numerous drawbacks, including human error, 
distracted driving, and traffic congestion, leading to a 
staggering number of injuries and fatalities on the 
roadways. Instead, emerging research suggests that ADVs 
possess the potential to revolutionize road safety 
dynamics, mitigating risks and reshaping the landscape of 
transportation. 

Several studies have underscored the pivotal role of this 
technology in minimizing the prevalence of accidents and 
fatalities on our roads, thanks to these vehicles’ capacity to 
avert collisions caused by human errors. Notably, the 
intersections, which are notorious hotspots for accidents, 
witness a significant reduction in potential conflicts and 
rear-end collisions with the advent of this technology 
(Khashayarfard and Nassiri, 2021). The promise of 
enhanced safety extends beyond individual vehicle 

operations, with ADVs showcasing the ability to smooth 
traffic flow, mitigate stop-and-go patterns, and alleviate 
travel delays in the event of road failures (Dong et al., 
2022) (Ye and Yamamoto, 2019). 

The global impact of these vehicles’ deployment on road 
safety is projected to be substantial, with estimates 
suggesting a potential reduction of accidents by up to 93% 
at unsignalized intersections (Calvi et al., 2022). 

Additionally, while simulation studies indicate substantial 
safety improvements at high penetration rates of 
autonomous driving vehicles, lower rates may initially 
introduce conflicts, necessitating careful navigation 
through transition phases (Alozi and Hussein, 2023). 

In light of these developments, this paper aims to delve 
into the topic of road safety through the introduction of 
ADVs. 

2.2 Simulation techniques for ADVs 

Different simulation techniques vary in their ability to 
accurately model the complex interactions between 
autonomous driving cars and their environment. Discrete 
event simulation focuses on modelling the sequence of 
events and the time between them, making it suitable for 
analysing the timing of events like traffic flow. System 
dynamics simulation, on the other hand, emphasizes 
feedback loops and the behaviour of the system over time, 
making it useful for understanding how changes in one 
part of the system affect the whole, such as traffic 
congestion dynamics. Agent-based simulation involves 
modelling individual entities with behaviours and 
interactions, allowing for a detailed examination of how 
individual cars interact within the environment, making it 
ideal for studying the behaviour of autonomous vehicles 
in a dynamic environment with various agents like 
pedestrians and other vehicles. Each simulation technique 
offers unique strengths in capturing different aspects of 
the interactions between autonomous driving cars and 
their surroundings, providing valuable insights into the 
complex dynamics of autonomous driving systems (Wen 
et al., 2021). 

System dynamics and agent-based simulations offer 
different strengths in modelling autonomous driving 
systems. In particular, system dynamics are well-suited for 
analysing high-level dynamics like traffic congestion and 
the impact of policy changes on the transportation 
network. System dynamics can provide insights into how 
changes in one part of the system, such as the number of 
autonomous vehicles, affect the whole. 

In contrast, agent-based simulations model the individual 
autonomous vehicles as autonomous agents with their 
own behaviours and decision-making rules (Achachlouei 
and Hilty, n.d.). 

This allows agent-based models to capture the complex 
interactions between individual vehicles, pedestrians, and 
other elements of the environment in a more granular way 
(Taillandier et al., 2021). Agent-based simulations are 
better able to simulate emergent behaviours that arise 
from these micro-level interactions. For this reason, 
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agent-based modelling provides a more detailed, bottom-
up perspective on the complex behaviours and 
interactions between individual autonomous vehicles and 
other actors (HÖrl, 2017). 

Finally, studies by (Bastarianto et al., 2023) and 
(Ljubovic, 2009) highlight the effectiveness of agent-
based models in simulating complex traffic environments 
demonstrating the potential of agent-based modelling in 
enhancing safety assessments for fully autonomous 
vehicles, providing a solid foundation for our proposed 
approach. 

3.Aims and objectives 

The primary aim of this paper is to explore the role of 
agent-based modelling in assessing safety for fully 
autonomous vehicles. 

Through an examination of various modelling techniques, 
the objective of this section is to clearly motivate the 
selection of ABM for modelling ADVs and their complex 
environments, highlighting the benefits for the safety 
evaluation (especially for what concern VRUs), also 
presenting a preliminary design framework for an ABM 
and proposing a possible enrichment of the model thanks 
to the Markov chains to enhance the understanding of 
ABM dynamics. 

3.1 Why Agent-Based Modelling? 

First, agent-based models are advanced in terms of 
flexibility, extensibility, and capability to realize 
heterogeneity (Li et al., 2021). This tool is widely 
employed in the field of crowd dynamics, in which the 
agents, having personalized characteristics, form a 
complex crowd dynamic system (Chen, 2012). This 
makes the agent-based models suitable for modelling the 
pedestrian flow considering pedestrian characteristics and 
their interactions with other VRUs and with the vehicles 
(Sinha and Rajasekar, 2020). 

ABM can be used to evaluate the safety of autonomous 
driving vehicles by simulating the interactions between 
autonomous vehicles and other road users, such as 
pedestrians and conventional vehicles. It can help in 
predicting pedestrian trajectories around an autonomous 
vehicle, which can be useful to understand how 
pedestrians react to autonomous vehicles and how to 
improve the safety of these interactions. This aspect was 
highlighted in the review by (Mehdizadeh et al., 2022). 

In the study by (Prédhumeau et al., 2022), an agent-
based model was developed to predict pedestrian 
trajectories around an autonomous vehicle in a shared 
space. The model was used for both conventional vehicles 
and autonomous vehicles, showing its flexibility. 

In conclusion, ABM can be a valuable instrument for 
evaluating the safety of autonomous driving vehicles by 
simulating the interactions between autonomous vehicles 
and other road users (Jing et al., 2020). By predicting 
pedestrian trajectories around an autonomous vehicle and 
understanding how automated vehicles can cooperate and 
share information about the environment, ABM can help 
in evaluating the safety of autonomous driving vehicles. 

3.2 Benefits of the ABM for the safety evaluation 

ABM has several benefits for evaluating the safety of 
autonomous driving vehicles: 

a. Predictive accuracy, ABM can predict pedestrian 
trajectories around an autonomous vehicle, helping to 
understand how pedestrians react to autonomous vehicles 
and how to improve the safety of these interactions. 

b. Simulation of interactions, ABM can simulate the 
interactions between autonomous vehicles and other road 
users, such as pedestrians and conventional vehicles. This 
can help in delineating how autonomous vehicles 
cooperate and share information about the environment 
to complete tasks quickly and safely. 

c. Scalability, ABM can handle the complexity of multiple 
interacting virtual vehicles with a variety of capabilities 
and have them all operate simultaneously. This can help in 
analysing how automated vehicles operate in a cooperative 
network. 

d. Realistic scenarios, ABM can simulate realistic 
scenarios, such as an enclosed area with random obstacles, 
to assess the performance of automated vehicles. This can 
describe the way in which autonomous vehicles behave in 
real-world environments. 

e. Team formation, ABM can enable the formation of 
teams based on the individual capabilities and location of 
autonomous vehicles. This can help in understanding how 
autonomous vehicles may cooperate and assist with tasks, 
such as classification and refuelling, to complete missions. 

f. Simulation of human behaviour, ABM can simulate the 
behaviour of human drivers and pedestrians in mixed 
traffic scenarios. This highlights how autonomous vehicles 
can operate in mixed traffic and improve the safety of 
these interactions. 

g. Design of traffic simulations, ABM can help in 
designing traffic simulations with adequate human driver 
models that cover the heterogeneity of human behaviour. 
This enhances the adherence of the simulation to real-
world traffic scenarios. 

h. Handling uncertainty and complexity, ABM can handle 
uncertainty and complexity in multi-agent simulation and 
modelling for autonomous vehicles. This ensures that the 
simulations are accurate, reliable, and scalable. 

The benefits listed in this section are based on a thorough 
review of the existing literature on autonomous vehicle 
safety assessments as well as insights from our expertise in 
the field. Notable studies contributing to this 
understanding include (Blom et al., n.d.) and (Zhao et 
al., 2019). 

In summary, ABM can help in evaluating the safety of 
autonomous driving vehicles by simulating the 
interactions between autonomous vehicles and other road 
users, predicting pedestrian trajectories around an 
autonomous vehicle, understanding how automated 
vehicles can cooperate and share information about the 
environment, improving the safety of autonomous driving 
vehicles through collaborative mapping, enabling team 
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formation based on individual capabilities and location, 
simulating human behaviour in mixed traffic scenarios, 
designing traffic simulations with adequate human driver 
models, and handling uncertainty and complexity in multi-
agent simulation and modelling for autonomous vehicles. 

3.3 Generical explanation of the framework structure 

It is possible to design the ABM following the 4 steps 
synthesized in Figure 1 (Huang et al., 2022). 

 

Figure 1 - Agent-based model structure. 

Step 1. Preliminary analysis entails delineating the specific 
application scenario, objectives, and scale of the agent-
based model for assessing the safety of autonomous 
driving vehicles. This involves defining the problem to be 
addressed, desired outcomes, and whether the focus is on 
describing, observing, or analysing a particular aspect of 
the transport system. The scale of the ABM dictates the 
scope of agent mobility and interaction, as well as the 
number of agents involved. Simulation resolution is 
aligned with the characteristics of the ADV system and its 
environment, ranging from detailed motion-level 
modelling to broader macroscopic perspectives. 

Step 2. Agent specification involves identifying and 
categorizing heterogeneous entities (agents) within the 
ADV system environment based on their roles and 
characteristics. Agents may include various types such as 
reactive agents simulating law enforcement personnel or 
disrupters like weather and accidents. Drivers, as adaptive 
and mobile agents, adjust their routes to minimize 
congestion. Determining agent types and characteristics 
facilitates the subsequent modelling of detailed 
behavioural rules tailored to specific scenarios. 

Step 3. Rule modelling focuses on representing the 
behaviour and interaction of agents based on published 
literature, expert knowledge, and data analysis. Rules 
typically utilize conditional statements to trigger agent 
actions in response to stimuli or pursue goals. Agent 
behaviour and interaction reflect these rules, often 
influenced by each other and offering feedback to the 
environment. Balancing the complexity of the model with 
computational efficiency is crucial, with considerations for 
employing parallel computing approaches to address 
computational costs. 

Step 4. Model refinement involves verification, calibration, 
and validation processes to ensure the accuracy and 
validity of the ABM. Verification ensures the correct 

implementation of the model, while calibration assesses its 
fit with empirical data to align with real-world 
observations. Validation confirms the model's accuracy in 
representing the ADV system. These processes are 
essential for demonstrating the reliability and effectiveness 
of the ABM in assessing the safety of autonomous driving 
vehicles. 

3.4 Preliminary design for a specific use case 

Following the above mentioned steps, it is possible to 
design a preliminary ABM.  

In the pre-analysis phase, after delineating the application 
of the ABM and purpose (a safety assessment for ADVs), 
the first thing to do is to select the scale of the ABM. This 
depends on the specific research question, for example, a 
study of a single intersection might use a smaller scale 
than a study of an entire city. Another fundamental step in 
this phase is the choice of the resolution, which refers to 
the level of detail in the model. A high-resolution model 
would include more details about the environment, such 
as lane markings and traffic signals. A lower-resolution 
model might only include the basic layout of the roads. 

After this preliminary phase, it follows the agents 
definition: in the context of interest, the agents will be the 
autonomous vehicles, the VRUs and the other vehicles. 
Each agent will be modeled as an independent decision-
maker with its own characteristics that can perceive its 
surroundings and take actions accordingly. 

Then, the ABM requires the so-called rules modelling: the 
agents’ behaviours and interactions are determined. These 
include rules for following traffic laws, avoiding obstacles, 
interacting with other agents, following the traffic lights, 
maintaining a safe distance from other vehicles, and 
yielding to pedestrians and cyclists. The interaction rules 
define how the agents interact with each other, with the 
infrastructure, and with the vulnerable road users. These 
rules require to be carefully designed to ensure safety and 
efficiency. Instead, the behavior rules are important as 
well, but these define how the agents make decisions 
about their behavior, such as changing lanes, merging into 
traffic, and stopping at intersections. 

Lastly, the model needs to be tuned, passing through a 
verification, a calibration and a validation. The verification 
ensures that the ABM is working as intended. This 
involves checking the model for errors and making sure 
that the code is functioning correctly. The calibration 
consists in adjusting the parameters of the ABM to match 
real-world data, for example the speed of the ADVs in the 
model might be calibrated to match the average speed of 
traffic on a particular road. And the validation ensures 
that the ABM produces realistic results. This involves 
comparing the output of the model to real-world data. For 
example, the ABM might be validated by comparing the 
travel times of simulated vehicles to the travel times of 
real vehicles. 

3.5 An interesting improvement: Markov chains’ use 

A Markov Chain is a stochastic model describing a 
sequence of possible events in which the probability of 
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each event depends only on the state attained in the 
previous events. It can be visually described as in the 
Figure 2. 

 

Figure 2 - Markov Chain visual description. 

Its basic characteristics are: 

1. It describes a system whose states change over time. 

 Discrete-time stochastic process. 

2. Changes are governed by a probability distribution. 

3. The next state only depends on the current system 
state. 

 The path to the present state is not relevant. 

4. Class of random process useful in different areas. 

Since the states are:  

o Mutually exclusive, the system must be only in 
one state at each time. 

o Exhaustive, the system must be only in one state 
at all times. 

This can be a suitable way to describe the system 
considered.  

In fact, it could be possible to couple our ABM with the 
Markov Chain perspective: both describe systems that 
change over time with discrete states and transitions 
governed by probabilities. In our context, the states of the 
agents (ADVs, VRUs, etc.) can be mapped to states in a 
Markov Chain. For instance, an ADV state could be 
"stopped at a red light," "changing lanes," or "merging 
into traffic." Transition probabilities between these states 
would then be determined by the programmed rules of 
the ABM.  For example, the probability of an ADV 
changing lanes would depend on the surrounding traffic 
density as defined in the model's rules.  By analysing these 
Markov Chains, we can gain valuable insights into the 
long-term behaviour of the ABM.  For instance, we could 
calculate the probability of an ADV encountering a 
pedestrian after running a yellow light (transitioning from 
"running yellow light" to "encountering pedestrian"). This 
approach offers a powerful tool for understanding the 
emergent properties of the system. But however, it's 
important to acknowledge the challenges involved: 
defining a comprehensive set of states and accurate 

transition probabilities can be complex. Highly dynamic 
elements or unforeseen events, such as sudden swerving 
or extreme weather conditions, might require additional 
considerations or adjustments to the Markov Chain 
framework. 

The main expected output of Markov Chain strategy 
applied to ABM is a better understanding of the 
relationship between microscopic and macroscopic 
dynamical properties (Banisch et al., 2013). 

For practical purposes, this is the most relevant 
information because the chains describe the evolution of 
the system before external perturbations take place and 
possibly throw it into a new setting: a well-posed 
mathematical basis for these models may help the 
understanding of many observed properties. 

Coupling the micro-description from ABM with the 
macro-description from the Markov Chain will provide 
information about the transition from the interaction of 
individual actors to the complex macroscopic behaviours 
observed in social systems. 

4.Key findings 

Based on the literature review and on the proposed 
methodology using ABM, one of the expected key 
findings of this research is an improved safety assessment 
for autonomous driving vehicles. This will allow to assess 
how ADVs perform in various scenarios, potentially 
leading to recommendations for improved safety 
measures. The ABM will be also able to predict pedestrian 
trajectories around ADVs.  This information can be used 
to understand how pedestrians react to these vehicles and 
how to design them and the surrounding infrastructure to 
enhance safety for pedestrians. Considered that ABM can 
handle many ADVs with varying capabilities, this will 
allow to analyse their behaviour in complex traffic 
situations. Additionally, the model can be designed to 
simulate realistic scenarios to assess the performance of 
these vehicles in real-world environments. Moreover, the 
model can simulate the behaviour of human drivers and 
pedestrians in scenarios with a mix of conventional and 
autonomous vehicles: this can provide insights into how 
ADVs can operate safely in mixed traffic environments. 
Finally, the ABM framework can handle the inherent 
uncertainties and complexities involved in simulating 
interactions between multiple autonomous vehicles and 
other agents in the traffic environment. This ensures the 
reliability and scalability of your simulations. 

By incorporating Markov Chains into this ABM analysis, it 
is expected to gain a deeper understanding of the long-
term behaviour of the system.  Specifically, having defined 
states for the agents (ADVs, VRUs, etc.), it could be 
possible to calculate the probabilities of transition 
between these states based on the programmed rules of 
the ABM. For example, the probability of an ADV 
encountering a pedestrian after running a yellow light. 
Furthermore, analysing the Markov Chains, it is expected 
to gain insights into the emergent properties of the ABM 
system, which arise from the interactions of individual 
agents. 
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In general, our findings indicate that integrating agent-
based modelling into safety assessments for autonomous 
vehicles enhances the predictive capabilities and 
robustness of these evaluations. This integration allows 
for more dynamic and realistic simulations of various 
traffic scenarios, which traditional methods fail to capture. 
The implications of this research are profound, suggesting 
that adopting agent-based modelling could lead to safer 
deployment of fully autonomous vehicles by providing 
more accurate risk assessments and facilitating the 
development of better safety protocols. 

5.Conclusions and future directions 

In conclusion, the ABM is designed to analyse interactions 
between ADVs, pedestrians, and conventional vehicles, 
while also predicting pedestrian trajectories around these 
vehicles. This will provide valuable insights into how 
ADVs perform in real-world scenarios with mixed traffic 
and complex situations. Enriching ABM through a 
Markovian lens opens avenues for connecting 
microscopic agent models to macroscopic observables, 
facilitating a nuanced understanding of model dynamics. It 
allows for the study of collective variable dynamics and 
provides insight into how macro dynamics emerge from 
micro dynamics, especially during transient periods. 

The utilization of a Markov chain proves particularly 
valuable in this context, illustrating how an agent-based 
model can be mathematically described. Although the 
entire dynamics of the ABM are encapsulated within the 
Markov chain, extracting insights directly from this 
representation can be challenging due to the vast 
dimensionality of the configuration space and its 
corresponding Markov transition matrix. 

Looking ahead at the next steps of this research, this will 
consist in the final design of the ABM framework 
following the four-step process. Additionally, it will be 
developed a comprehensive set of states and accurate 
transition probabilities for the Markov Chain analysis. 
Later on, it will be developed a functional prototype to 
validate our proposed agent-based modelling approach. 
Obviously, this prototype will be tested extensively, to 
analyse the results and appreciate the significant 
improvement in safety assessment accuracy compared to 
traditional methods (if present). 

By addressing these aspects and exploring methods to 
handle unforeseen events within this framework, the 
future research aims to leverage the combined power of 
ABM and Markov Chains to calculate specific 
probabilities relevant to safety assessments. Ultimately, 
these future developments aspire to provide a deeper 
understanding of the connection between microscopic 
agent behaviours and macroscopic system dynamics in the 
context of autonomous vehicles navigating complex 
traffic environments. 
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