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Abstract: The worker-related phenomenon of learning and forgetting has received a significant attention in several fields of 
study. It is important to understand how individuals acquire, maintain, and potentially loose competence to optimize training 
strategies and performance outcomes, posing challenges and opportunities for both researchers and practitioners. This study 
explores the use of learning and forgetting models in manufacturing, assembly, maintenance, and logistics considering specific 
task features such as work environment as well as nature, frequency, difficulty, and criticality. Results of the taxonomy show 
that there is a significant research gap on learning-forgetting models regarding cognitive activities, as well as non-routine 
activities, or tasks characterized by a high level of criticality. Due to the technological advancements of the last years, there is 
a progressive transition from repetitive motor activities to tasks that require more cognitive efforts, characterized by higher 
complexity, and lower level of repetitiveness. Understanding the nuances of forgetting can aid in developing more effective 
training and knowledge retention strategies, thereby enhancing performance and well-being of workers. Therefore, there is an 
increasing need to study learning and forgetting phenomena focusing on the new type of activities emerging in the current 
working scenarios.   
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1. Introduction  

In recent decades, the industrial landscape has undergone a 
significant transformation due to the common adoption of 
advanced digital technologies and the convergence of 
physical and digital systems. The transformation process is 
commonly associated with the concept of 'Industry 4.0'. 
This paradigm is characterized by the integration of smart 
technologies, the automation of production processes, and 
the creation of interconnected systems that enable real-time 
data collection and analysis (Zizic et al., 2022). Although 
Industry 4.0 (I4.0) has led to significant increases in 
efficiency, productivity, and flexibility in industrial 
processes, we are now witnessing a new evolutionary phase: 
Industry 5.0 (I5.0). 
I5.0 is the next stage in the transformation of the industrial 
sector, with a greater emphasis on human-machine 
interaction, collaboration between robots and human 
operators, and the integration of advanced technologies 
such as artificial intelligence, collaborative robotics, and the 
Internet of Things (Zizic et al., 2022). I5.0 poses its 
emphasis on creating resilient, sustainable, and human-
centric working environments (Facchini et al., 2021; 
Ferrante et al., 2024). 
The transition from I4.0 to I5.0 presents unique challenges 
and opportunities for individuals, organisations, and 
technologies involved in the production process. A crucial 
aspect of this transition concerns the nature of tasks 
required to operators. Industry 5.0 requires adaptation to 
current working scenarios where tasks become more varied 
and complex (Goos et al., 2014). Recent studies highlight 
job polarisation, with an increasing demand for high-skilled 
jobs that require advanced cognitive skills, and a decrease 
in low-skilled jobs that are threatened by routine-biased 
technological change and offshoring (Arregui Pabollet, E. 

et al., 2019). Moreover, digitization and automation are 
transforming the nature of work, demanding skills that go 
beyond technical abilities, such as problem-solving, 
creativity, and adaptability (Davis et al., 2017). 
While many organizations recognize the need for further 
training, manufacturers aim to reduce costs by developing 
efficient and concise learning methods. To achieve this 
goal, an alternative approach is required that encourages 
proactive learning among trainees. This paradigm reduces 
training duration, improves skills retention, cultivates 
situational awareness, and contributes to a healthier and 
safer working environment (Matyas et al., 2017). 
However, despite extensive discussion on the evolution of 
the industry and its implications for work, there is a 
noticeable gap in the literature.  
Specifically, there is a significant lack of works dedicated to 
the new training needs in the context of Industry 5.0. This 
study investigates the causes of this gap through a 
taxonomy of works that deal with learning-forgetting 
models, posing emphasis on activities-related features such 
as level of criticality, frequency, nature and complexity of 
tasks. The goal is to guide future engineers and managers 
in the optimal design of learning and training strategies that 
consider new needs and challenges posed by Industry 5.0. 
The article will follow this structure: Section 2 provides 
background on learning and forgetting models. Section 3 
examines proposes the taxonomy of works related to 
learning and forgetting by considering type of application, 
type of task, frequency, criticality, and difficulty. Sections 4 
and 5 present discussion and conclusions. 

2. Background 

The Wright curve, also known as the learning curve or 
experience curve, is a fundamental concept in the field of 
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operations management and industrial optimization. It was 
first introduced by Theodore Paul Wright in 1936 during 
his studies on aircraft production in World War II (Wright, 
1936). This theory has found common applications in 
various fields, including industrial production and 
innovation industries.  
The intrinsic relationship between the experience gained in 
a particular activity and the productivity achieved over time 
is the essence of this concept. As experience is gained, 
performance tends to improve in a measurable and 
predictable way.  Productivity often increases exponentially 
as experience and skills improve, procedures are optimized, 
and resources are managed more efficiently. Wright's curve 
illustrates this phenomenon by demonstrating the 
relationship between productivity and the number of 
iterations or experience accumulated. This idea has been 
and continues to be an essential tool for companies to 
understand and manage learning and improvement 
processes. By doing so, companies can more effectively 
plan staff training, optimize production processes, and set 
realistic expectations for delivery times and costs (Kim et 
al., 2013). 
Wright’s learning model has undergone refinements and 
extensions through the development of innovative models 
and approaches. These models aim to refine the 
understanding of the relationship between experience and 
productivity to apply this concept in complex and dynamic 
contexts as well as to overcome some limits of the Power 
model of Wright.  
Further phenomena causing dynamic variability of workers’ 
performance have been investigating since the previous 
century. Jaber and Bonney (1996) proposed a ‘learning-
forgetting’ model allowing to consider the opposite effect 
of non-working time on learning. More recently, Podolski 
et al. (2022a) investigated the impact of learning and 
forgetting processes on construction project costs. In 
(Jaber et al., 2013), Authors investigated on the 
effectiveness of learning in workers subjected to fatigue 
phenomenon. Additional contributions to this topic is 
provided in (Asadayoobi et al., 2021a), where Authors 
proposed a fatigue level-dependent learning rate for order-
picking tasks.  
In the context of task planning optimization, numerous 
scholars have proposed innovative models and algorithms 
to address specific challenges in manufacturing. For 
instance, Morimoto et al. (2016) presented a model based 
on constrained cellular automata with the aim of lean 
manufacturing of carbon fiber aerospace components. This 
model aims to optimize manufacturing processes by 
exploiting learning curve principles, thus enabling 
significant improvements in operational efficiency. 
Similarly, Sekkal and Belkaid ((2023) address the challenge 
of planning production activities by considering both setup 
time and worker learning processes through multi-objective 
optimization. These approaches provide a comprehensive 
framework for addressing the complexities of production 
activity planning, enabling optimal resource utilization and 
overall efficiency. Concurrently, Liu et al. (2016) examine 
learning and improvement processes in organizations, 
offering a more comprehensive analysis. Building upon this 
foundation, Kiomjian et al. (2020) investigate the 
relationship between knowledge sharing and organizational 

productivity. Understanding the impact of knowledge 
sharing on business performance is essential for developing 
effective optimization strategies. In a recent publication, 
Szwarc et al. (2024)  offer further insights into the processes 
of learning and improvement within organizations. This 
research helps to delineate the internal dynamics of 
companies and enables the development of more targeted 
strategies to optimize overall performance and achieve 
business goals. Optimization of production and 
maintenance processes plays a pivotal role in ensuring 
operational efficiency and end-product quality. Tarakci 
(2016) examined the influence of learning on maintenance 
activities over time, providing a distinctive perspective on 
maintenance process optimization. Understanding how 
learning affects maintenance activities over time is of 
paramount importance for developing effective strategies 
to maximize equipment reliability and minimize downtime. 
Furthermore, Chu et al. (2019) proposed a model that 
considers machine degradation, human errors, and their 
effects on production processes. Including these factors in 
the production model allows for anticipation and proactive 
management of unforeseen events, thus ensuring the 
continuity of operations and product quality. Several 
studies have emerged that address the challenges associated 
with the complexity of production processes and personnel 
management. Kataoka et al. (2019) emphasised the 
continued importance and relevance of Wright curve 
theory in the context of manufacturing in industrial 
settings. Recently, Ranasinghe et al. (Ranasinghe et al., 
2024) proposed a model that deals with stochastic and 
heterogeneous learning of workers. This model considers 
individual variations in learning processes, enabling more 
effective human resource management and higher overall 
productivity. In addition, recent studies have expanded our 
understanding of workforce management and learning 
dynamics within organizations. Cavagnini et al. ( addressed 
variability in learning rates, highlighting the importance of 
robust workforce planning strategies. Ostermeier and 
Deuse (2023) examined the phenomenon of forgetting in 
intermittent manufacturing environments, shedding light 
on the challenges and opportunities associated with 
managing memory decay in manufacturing environments. 
Other researchers, such as Korytkowski (2017) and Hoedt 
et al. (2019), have contributed to the field with their 
innovative models and approaches. These collective efforts 
enhance our ability to develop targeted strategies to 
optimize manufacturing activities and workforce 
management, ultimately leading to increased productivity 
and achievement of organizational goals. 

3. Taxonomy of learning-forgetting models 

To define a taxonomy of learning-forgetting models, 
relevant scientific papers on this topic have been retrieved 
from Scopus database and analysed. The search has been 
carried out using string obtained combining words 
‘learning’, ‘forgetting’, ‘rate’, ‘curve’, process’, ‘model’, 
’manufacturing’, ‘industry’, ‘maintenance’, ‘operator’, 
‘worker’, ‘workforce’, ‘employee’. Papers published in 
English from 2009 in both journals and conference 
proceedings have been considered. The selection process 
included an initial screening of titles and abstracts to 
identify relevant articles, followed by a full-text review to 
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assess the relevance and quality of the studies. Specifically, 
we included documents that discuss the impact of learning 
and training in the context of Industry 4.0 and, where 
present, Industry 5.0. We ensured a satisfactory level of 
comprehensiveness by considering studies from various 
disciplines and industrial applications, thus covering a 
broad spectrum of approaches and model. In the following, 
only most relevant papers are discussed to support the 
taxonomy proposed. They have been classified according 
to the following tasks features: application field, type of 
activity and task frequency, criticality, and difficulty, as 
detailed in Appendix A and discussed in the following. As 
showed in Appendix A, in all the papers considered a new 
or the application of an existing learning model is discussed. 
In some of them, also forgetting phenomenon is 
considered. 
3.1 Feature A: Work environment 

Work environment refers to the type of activity for which 
the models or the applications proposed by Authors have 
been defined and/or applied. In most of the papers 
considered, learning and forgetting models/applications 
refer to tasks related to production activities. Few papers 
deal with maintenance (Szwarc et al., 2024; Tarakci, 2016) and 
order picking (Loske and Klumpp, 2020) ones.  
As highlighted by Z. Luo et al (2022), the learning and 
forgetting curve are a fundamental concept with numerous 
cross-sectional applications in sectors such as production 
and maintenance. In production contexts, understanding 
these phenomena can allow for efficient planning of 
employee training activities, thus improving overall 
productivity. In maintenance, the analysis of the learning 
and forgetting curve can help optimize preventive 
maintenance strategies and predict equipment replacement 
times, reducing costs, and improving plant reliability (Luo 
and Su, 2022).  
3.2 Feature B: Task nature 

Papers have been further classified based on the nature of 
the tasks (motor/cognitive), models or applications 
provided are conceived for. Motor tasks mainly involve 
tasks such as handling items or assembling components. 
On the other hand, cognitive activities mainly involve 
mental processes such as problem-solving, data analysis, 
and strategic planning. 
Models and applications in the papers considered mainly 
focus on motor tasks. In (Morimoto et al., 2016), a learning 
curve for carbon fiber component production tasks is 
proposed; learning and forgetting phenomena in garment 
production tasks are considered in (Badri et al., 2016; 
Ranasinghe et al., 2024); assembly tasks are considered in 
(Mark et al., 2020); manual pick-by-voice and semi-
automated order picking tasks are considered in (Loske and 
Klumpp, 2020); activities in the construction sector are 
addressed in (Podolski et al., 2022a); maintenance tasks are 
considered in (Tarakci, 2016). Szwarc et al. (Szwarc et al., 
2024), focus on cognitive tasks carried out by multi-skilled 
IT programmers.   

3.3 Feature C: Task Frequency 

A further classification concerns the frequency of the 
execution of the task investigated in the papers considered. 

Papers have been clustered into three classes: (i) high, if the 
task investigated is performed at least once during the work 
shift; (ii) medium, in case the task occurs at least once per 
month; (iii) low, in case of a frequency less than once a 
month.  
High frequency tasks performed in production/assembly 
environment are common in the paper considered as in 
(Ranasinghe et al., 2024; Che et al., 2022 Chu et al., 2019). 
In contrast, Hakan Tarakci (2016) discusses maintenance, 
specifically preventive maintenance (PM), where a lower 
frequency of task execution (quarterly or semi-annually), is 
required. In case of corrective maintenance, no specific 
frequency is identified since it is implemented in response 
to a specific failure. Not all papers considered have been 
classified based on this feature due to the unavailability of 
data on tasks frequency. 
3.4 Feature D: Task Difficulty  

The fourth feature considered is task difficulty. Currently, 
there is not a wide consensus on how to measure task 
difficulty (Liu and Li, 2012). In this paper, the task's level 
of difficulty is assessed based on three main factors. 
The first factor considered is the task execution frequency. 
A high frequency can increase the task complexity 
perceived by the worker and, consequently, its level of 
difficulty. As second factor, we considered the expected 
duration of the task. Tasks that take a long time tend to be 
more complex to manage and complete, which can affect 
their difficulty. Finally, the last factor considered is the 
knowledge required to effectively perform the task. Tasks 
that require specialized training or extensive experience 
may be more demanding. By considering these factors, 
three task difficulty levels are identified: high, medium, and 
low, in case of 3 out of 3, 2 out of 3, and 1 out of 3 factors 
assume high values, respectively. In the reviewed papers. a 
variety of difficulty levels were found.  
Tasks with a high level of difficulty are considered in (Che 
et al., 2022; Zhang et al., 2022), where critical variables such 
as machine degradation, which inevitably affects operator 
learning, can be difficult to manage. Similarly, variables 
such as machine set-up times can increase the level of 
difficulty, as they require efficient management by the 
operator. For instance, construction projects require 
familiarity, as discussed in (Podolski et al., 2022a). Tarakci 
(Tarakci, 2016) highlights that unexpected maintenance 
tasks require a high level of alertness and responsiveness, 
as the operator must be ready to intervene without 
continuous preparation on the machines used. These tasks 
are found to be more difficult compared to others. Case 
studies involving multi-skilled operators, who must be 
versatile as they deal with a wide range of tasks requiring 
both motor and cognitive involvement, also fall into the 
high level of difficulty (Chu et al., 2019; Hoedt et al., 2019; 
Liu et al., 2016).  
In case of tasks performed with low frequency but 
requiring not only motor effort, but also in-depth 
knowledge of production dynamics, material properties, 
and their applications, medium level of difficulty is assigned 
(Morimoto et al., 2016).  
In contrast, items with a low level of difficulty are also 
investigated, such as in order picking systems, particularly 
those incorporating audio (Loske and Klumpp, 2020) or 
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video support, which reduces operational complexity and 
facilitates task execution (de Giorgio et al., 2022).  

3.5 Feature E: Task Criticality  

The last feature considered is the task criticality; it is based 
on three factors. Two of them (safety issues and economic 
issues) are evaluated based on the outcomes that can occur 
in case the task is not performed, or it is not performed in 
the proper way; the last factor considered is the task 
execution frequency (the more a task is performed, higher 
will be the occurrence probability of a missed or an 
improper execution). Based on above mentioned factors, 
papers were classified into three criticality levels: high, 
medium, and low, by adopting the same classification 
criteria of feature D. 
Many of the reviewed studies concentrate on high critical 
tasks as in the case of critical components for airplane 
structures, since errors in this area can affect flight safety 
(Morimoto et al., 2016). Che’s perspective (2022) on the 
effects of machine degradation on operator learning and 
the associated high risk is of particular interest. The 
construction sector has experienced significant challenges 
(Ergun and Pradhananga; Podolski et al., 2022a). These 
challenges arise not only from the nature of the work, but 
also from the high number of repetitive tasks that are 
typical in this industry.  
The production in textile industries can present medium 
critical tasks, as shown in (Badri et al., 2016). Tasks with 
low criticality were found also in production 
contexts(Cavagnini et al., 2020; Hoedt et al., 2019; Liu et 
al., 2016; Mark et al., 2020; Ostermeier and Deuse, 2023). 
Not all tasks investigated in the reviewed papers exhibit 
high or medium criticality. In fact, new technologies have 
been introduced to assist operators during work activities, 
particularly in the field of production. For instance, Loske 
et al. (2020) investigated semi-automated picking in 
production, utilizing ‘pick by voice’ and ‘pick by light’ 
modes. Additionally, a recent study on learning using 
explanatory videos (de Giorgio et al., 2022), has shown that 
expert video assistance accelerates initial assembly learning, 
but presents challenges due to data variance. Unassisted 
operators demonstrate slower but significant 
improvements in long-term learning, which requires the 
attention of both industry and researchers. In these cases, 
the resulting criticality can be classified as low. 
 

4. Discussion  

Understanding how the dynamics of learning and 
forgetting influence job performance is crucial for driving 
innovation and growing in an industrial world that is 
constantly changing. By combining the various criteria used 
for classification, we can identify key areas that require 
further exploration and consideration to effectively address 
the evolving needs of modern industrial operations. In 
Table 1 main findings on the present article have been 
summarized. 
A significant observation that emerged from the review is 
the bias in research on the learning effect in cognitive tasks. 
While the reviewed literature mainly focuses on learning-
forgetting models in motor tasks such as production and 
maintenance, there is a lack of studies on cognitive tasks. 

Table 1 Features and main findings related to Learning-
Forgetting Models 

Feature Main Findings 
Task Nature Most models focus on motor tasks like 

handling items or assembling 
components. However, cognitive tasks 
are crucial for Industry 5.0 and require 
more attention. 

Task Frequency High frequency tasks are performed 
daily and are common in production 
settings. Lower frequency tasks, like 
preventive maintenance, are less 
frequent. Not all studies provide data 
on task frequency. 

Task Difficulty Difficulty is assessed by task frequency, 
duration, and required knowledge. 
High difficulty tasks involve complex 
variables like machine degradation. 
Medium difficulty tasks require specific 
knowledge. Low difficulty tasks are 
simpler. 

Task Criticality Criticality is based on safety, economic 
impact, and frequency. High criticality 
tasks are common in high-risk sectors 
like aviation and chemical industry. 
Medium and low criticality tasks are 
also present in production contexts. 

Work Environment Learning and forgetting models are 
mainly applied to production tasks, 
with fewer studies on maintenance and 
order picking. Understanding these 
models helps to optimize training and 
maintenance strategies. 

This gap becomes particularly relevant in the transition to 
Industry 5.0, where human-machine collaboration and 
cognitive skills are increasingly important. These skills are 
essential in contexts where collaboration between humans 
and machines is increasingly integrated, such as in complex 
decision-making processes or in the interpretation and 
analysis of data, to ensure accurate and effective results. In 
Industry 5.0, where customization and adaptability are 
crucial, the ability to solve complex problems, innovate, 
and quickly adapt to market changes is essential for 
business success. Investing the cognitive skills of operators 
enables companies to tackle more complex challenges and 
seize emerging opportunities more effectively.  
The task frequency classification criterion emphasizes the 
prevalent focus on repetitive and routine tasks. However, 
as industries advance towards Industry 5.0, characterized 
by greater flexibility and personalization, tasks become 
more varied and dynamic. To maintain high standards of 
productivity and quality, operators must learn quickly and 
adapt effectively to new situations and tasks. Preparing 
operators for this increasing variety and complexity is 
essential. Investing the cognitive skills of operators can 
enhance a company's efficiency, innovation, and 
competitiveness, preparing them for an increasingly 
digitized and dynamic industrial future.  
The assessment of task difficulty highlights the 
multifaceted nature of the challenges faced by operators in 
modern industrial settings. As tasks become more complex 
in Industry 5.0, there is a growing need for adaptive 
learning approaches that consider individual learning styles 
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and preferences. Customized learning solutions allow 
operators to acquire skills more effectively by focusing on 
their specific strengths and areas for improvement. By 
utilizing emerging technologies, such as virtual reality 
simulations and augmented reality assistance (Longo et al., 
2023), training can be enhanced by providing immersive 
and interactive learning experiences. The adoption of 
adaptive training approaches and the use of innovative 
technologies can play a key role in preparing operators for 
the challenges of Industry 5.0. Investing in advanced 
training solutions improves operators' skills and fosters a 
safe, efficient, and state-of-the-art working environment.  
It is important to consider not only productivity 
implications but also safety and economic factors when 
assessing the criticality of tasks. Tasks with high criticality 
require more attention in training and skills development 
efforts to mitigate risks and prevent costly disruptions. In 
Industry 5.0, the criticality of tasks may evolve as the 
interaction between humans and machines becomes 
increasingly integrated. Therefore, it is important to 
continuously adapt strategies for managing and mitigating 
risks associated with critical tasks to align with evolving 
technological developments and operational paradigms. In 
Industry 5.0 while some tasks may become less critical due 
to the increased reliability and automation of processes, 
others may become more critical due to the complexity of 
human-machine interactions. For instance, the 
introduction of collaborative robots in production lines 
may reduce the criticality of repetitive and physical tasks 
but may increase the criticality of maintaining and 
programming the robots themselves.  
The criticality assessment of tasks may be affected by the 
working environment. Sectors with high risks, such as the 
chemical industry, nuclear energy, or aviation, may have a 
higher concentration of highly critical tasks than less 
hazardous sectors, such as the service sector. Therefore, it 
is necessary to tailor training and risk management 
strategies to the specific operational context. Assessing the 
criticality of tasks in Industry 5.0 requires a comprehensive 
approach that considers not only productivity but also 
safety, cost-effectiveness, and technological developments. 
In-depth analysis and proactive risk management are 
necessary to ensure a safe, efficient, and state-of-the-art 
working environment.  
From a practical perspective, analyzing the taxonomy of 
learning-forgetting models provides valuable insights into 
how companies can optimize their training and 
competence development strategies to meet the challenges 
of Industry 5.0. It is crucial to invest in training programs 
that focus not only on technical skills but also on the 
cognitive and adaptive skills required. To improve the skills 
of employees, ad hoc training courses should be introduced 
to encourage the development of problem-solving, 
creativity, and adaptability, in addition to technical 
knowledge. Moreover, companies should promote flexible 
training programs that enable operators to acquire skills 
efficiently and effectively to cope with the increasing 
variety, complexity, and frequency of tasks. Companies 
must ensure that operators are adequately trained to handle 
emergency situations and prevent accidents in the 
workplace, given the potentially serious implications of 
errors in critical activities such as maintenance of plants. 

The use of virtual simulations, augmented reality, and 
game-based learning can make the training experience more 
engaging and interactive, enabling operators to acquire 
skills more effectively and memorably. By adopting a 
holistic approach to train and develop innovative and 
adaptable strategies, organizations can ensure that their 
teams are equipped to meet the challenges and seize the 
opportunities presented by this new industrial paradigm. 
Furthermore, the strategic application of learning and 
forgetting models can enhance an organization's resilience, 
allowing for more effective management of critical 
competencies during crises and periods of rapid 
technological or market changes. These models facilitate 
organizational adaptability to new technologies, helping 
employees continuously maintain and update their skills, 
which is crucial for competing in the era of Industry 5.0. 

5. Conclusion  

Despite the progress made in understanding the dynamics 
of learning and forgetting, there is a clear gap in the 
literature regarding training needs and strategies specifically 
adapted to I5.0. This gap highlights the need for innovative 
approaches that address the changing landscape of 
industrial activities, characterised by digitisation, cognitive, 
and less repetitive activities. To fill this gap and pave the 
way for future developments, it is essential to propose new 
models that represent a paradigm shift in the training of 
operators.  
These models should be designed to efficiently address the 
identified gaps while ensuring economic sustainability. 
Training models should be optimised to deliver effective 
results in a short period of time while minimising costs. 
Innovative training methods, such as adaptive learning 
algorithms and customised learning paths, can help 
achieving this by tailoring the learning experience to the 
individual needs and capabilities of participants. While 
reducing training time is essential, it is equally important to 
ensure the effectiveness of training in providing 
practitioners with the necessary skills and knowledge.  
Therefore, interactive learning tools, practical simulations 
and real-life scenarios should be integrated into the training 
phase to improve retention and application of skills.  At the 
same time, it is crucial to ensure the safety of operators 
during training, especially in areas with high-risk activities. 
It is therefore necessary to integrate safety protocols, 
emergency response simulations and risk management 
strategies to prepare operators for potential workplace 
hazards, minimising the risk of accidents or injuries. Given 
the dynamics of I5.0 work environments, integrating these 
principles into the training models will not only fill existing 
knowledge gaps, but also enable organisations to keep pace 
with the rapidly changing industrial landscape. 
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Appendix A. 

List of articles analysed. Abbreviations: MA = Maintenance; PR = production; OP = order picking; C = cognitive task; M = motor task; L 
= low; M = medium; H = high; n.a. = not available

Reference Learning Forgetting Work 
environment  

Task 
nature 

Task 
Frequency 

Task 
Difficulty 

Task 
Criticality 

(Szwarc et al., 2024) ü ü MA C H M L 
(Ranasinghe et al., 2024) ü  PR M H M H 

(Sekkal and Belkaid, 
2023) ü  PR M H H H 

(Ostermeier and Deuse, 
2023)  ü PR M H H M 

(Luo and Su, 2022) ü ü	 n.a n.a n.a n.a n.a 
(Podolski et al., 2022b) ü ü	 PR M H H H 

(Che et al., 2022) ü ü PR M H H L 
(de Giorgio et al., 2022) ü  PR M n.a L L 

(Zhang et al., 2022) ü ü PR M H H H 
(Asadayoobi et al., 

2021b) ü  PR M H L L 

(Mark et al., 2020) ü  PR M H M M 
(Kiomjian et al., 2020) ü  PR M H M H 
(Cavagnini et al., 2020) ü ü PR M H L M 
(Loske and Klumpp, 

2020) ü  OP M H L L 

(Chu et al., 2019) ü ü PR M H H H 
(Hoedt et al., 2019)  ü PR M n.a H M 

(Kataoka et al., 2019) ü ü PR M H H H 
(Korytkowski, 2017) ü ü PR M n.a M L 

(Tarakci, 2016) ü  MA M L H H 
(Liu et al., 2016) ü ü PR       M H H M 

(Badri et al., 2016) ü  PR M H L M 
(Morimoto et al., 2016) ü  PR M H H H 

(Kim et al., 2013) ü ü n.a. n.a n.a n.a n.a 
(Jaber et al., 2013) ü ü PR M n.a M L 

 


