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Abstract: In the era of Industry 4.0 and mass customization, manufacturing systems face the challenge of managing 
increased product variety and demand variability. Effective Work-In-Progress (WIP) control is crucial for maintaining 
optimal productivity and lead time in these dynamic environments. This paper proposes a novel adaptive WIP control 
approach for semi-heterarchical manufacturing systems using Deep Reinforcement Learning (DRL). The proposed 
approach leverages a Deep Q-Network (DQN) agent to learn optimal WIP control policies through interaction with 
a stochastic simulation environment. The DQN agent considers the current system state, processing time variability, 
and throughput targets to make real-time decisions and dynamically adjust WIP levels. The problem is formulated as 
a Markov Decision Process (MDP), and the DQN agent is trained using a custom simulation environment developed 
with the Simpy library. The experimental results validate the performance and adaptability of the proposed approach 
under different production scenarios and variability levels. The DQN-based WIP control approach demonstrates its 
ability to maintain the desired throughput while minimizing WIP levels, leading to improved overall performance of 
the manufacturing system. This research contributes to the advancement of intelligent manufacturing and provides a 
data-driven solution for adaptive WIP control in semi-heterarchical production systems. 
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1. Introduction 

In the era of Industry 4.0, manufacturing systems face the 
challenge of managing increased product customisation 
and demand variability, which introduce significant 
complexity and uncertainty in production processes 
(Zhong et al., 2017). Mass customisation has emerged as a 
key paradigm to address these challenges, enabling 
companies to provide personalised products and services 
while maintaining the efficiency and cost-effectiveness of 
mass production (Fogliatto et al., 2012; Salatiello et al., 
2022).  

Work-In-Progress (WIP) control plays a critical role in 
balancing productivity and lead time in manufacturing 
systems. Effective WIP control strategies aim to maintain 
optimal inventory levels to ensure smooth production 
flow and minimise the impact of variability (Hopp and 
Spearman, 2011). The CONstant Work In Progress 
(CONWIP) control policy has been widely adopted in 
manufacturing systems due to its ability to limit WIP levels 
and achieve a pull-based production control (Spearman et 
al., 1990). However, determining the appropriate WIP 
levels in the face of varying demand and processing times 
remains a significant challenge (Framinan et al., 2003). 

Recent advancements in Industry 4.0 technologies, such as 
Cyber-Physical Systems (CPS) and the Internet of Things 
(IoT), have enabled the collection and analysis of real-time 
production data (Monostori, 2015). This data-driven 
approach has paved the way for the application of machine 
learning techniques, particularly Reinforcement Learning 
(RL), in production control (Wuest et al., 2016). RL has 

emerged as a promising approach for adaptive decision-
making in complex and dynamic environments, allowing 
agents to learn optimal control policies through 
interaction with the environment (Sutton and Barto, 
2020). 

Several studies have explored the application of RL in 
manufacturing systems, showing promising results in 
various manufacturing control applications, including 
adaptive scheduling, resource allocation, and maintenance 
planning. For instance, Waschneck et al. (2018) applied 
Deep Q-Networks (DQN) for adaptive scheduling in a 
flexible manufacturing system, demonstrating improved 
performance compared to traditional heuristics. 
Marchesano et al. (2022) proposed a deep reinforcement 
learning approach for maintenance planning in a flow-
shop scheduling problem, further demonstrating the 
versatility of RL in manufacturing optimization. Despite 
these advancements, the application of RL for adaptive 
WIP control in semi-heterarchical architectures remains 
largely unexplored. Moreover, existing studies often 
assume simplified production environments and fail to 
consider the impact of processing time variability on WIP 
control. 

To address these gaps, this paper proposes a novel 
approach for adaptive WIP control in semi-heterarchical 
manufacturing architectures using RL. The proposed 
framework focuses on a flow-shop production system 
with a CONWIP control policy, where job processing 
times follow a variable gamma distribution. By employing 
a DQN agent as a model-free controller and utilising 
simulation-based training, optimal WIP control policies 
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can be derived without relying on explicit mathematical 
models. 

The main contributions of this paper are as follows: 

1. A novel RL-based framework for adaptive WIP 
control in semi-heterarchical manufacturing 
architectures, considering variable processing times. 

2. A simulation environment based on the gamma 
distribution for modelling different realistic 
production variability. 

3. A preliminary evaluation of the proposed approach, 
demonstrating its robustness and adaptability in 
handling variations in processing time variability and 
throughput targets. 

The remainder of this paper is organised as follows. 
Section 2 reviews the relevant literature on WIP control, 
RL in manufacturing, and semi-heterarchical architectures. 
Section 3 presents the proposed methodology, including 
the problem formulation, the DQN agent architecture, 
and the simulation environment. Section 4 describes the 
experimental setup and results. Finally, Section 6 
concludes the paper and outlines future research 
directions. 

2. Background and Related Work 

2.1 Work-In-Progress Control in Manufacturing 

Systems 

WIP control is a critical aspect of production management 
that aims to maintain optimal inventory levels in 
manufacturing systems. Effective WIP control strategies 
help to balance productivity, lead time, and inventory costs 
by regulating the flow of material through the production 
process (Hopp and Spearman, 2011). Various WIP control 
policies have been proposed in the literature, including 
kanban, base stock, and CONWIP (Framinan et al., 2003). 

Among these policies, CONWIP has gained significant 
attention due to its ability to limit WIP levels and achieve 
a pull-based production control (Spearman et al., 1990). In 
a CONWIP system, a fixed number of cards or tokens are 
used to control the release of jobs into the production line. 
When a job is completed, its associated card is returned to 
the beginning of the line, allowing a new job to be released 
(Hopp and Spearman, 2011). This mechanism ensures that 
the total WIP in the system remains constant, reducing the 
impact of variability and improving flow. 

Hopp and Spearman (2011) proposed a set of 
performance measures for CONWIP systems under 
various operating conditions. For a balanced line with no 
variability, the best-case performance measures are given 
by: 

𝑇𝐻𝑚𝑎𝑥 =  {

𝑤

𝑇0

          𝑖𝑓   𝑤 ≤ 𝑊0

𝑟𝑏            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

𝐶𝑇𝑚𝑖𝑛 = {

T0          𝑖𝑓   𝑤 ≤ 𝑊0
𝑤

𝑟𝑏

          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

where 𝑤 is the WIP level, T0 is the raw processing time, 

𝑊0 is the critical WIP level, and 𝑟𝑏 is the bottleneck rate. 

Here 𝐶𝑇𝑚𝑖𝑛 and 𝑇𝐻𝑚𝑎𝑥 represent the best-case 
(minimum) cycle time and the (maximum) throughput for 
a given WIP level (w), respectively. 

For a balanced line with exponentially distributed 
processing times (i.e., the Practical Worst Case (PWC)), 
the performance measures are given by: 

𝑇𝐻𝑃𝑊𝐶 = (
𝑤

𝑊0 + 𝑤 − 1
) ∙ 𝑟𝑏 

𝐶𝑇𝑃𝑊𝐶 = 𝑇0 + (
𝑤 − 1

𝑟𝑏

) 

The introduction of the PWC serves as a benchmark for 
improvement targets, providing a realistic worst-case 
scenario against which actual system performance can be 
compared. Determining the optimal WIP level in a 
CONWIP system is a challenging task, particularly in the 
presence of variable demand and processing times 
(Framinan et al., 2003). Traditional approaches to WIP 
control often rely on analytical models and heuristics, 
which may not adequately capture the complexity and 
uncertainty of real-world manufacturing systems. As a 
result, there is a growing need for adaptive and data-driven 
methods that can dynamically adjust WIP levels based on 
the current state of the system. 

2.2 Reinforcement Learning in Manufacturing 

Reinforcement Learning (RL) is a branch of machine 
learning that focuses on learning optimal control policies 
through interaction with an environment (Sutton and 
Barto, 2020). In an RL framework, an agent learns to make 
decisions by receiving rewards or penalties based on the 
outcomes of its actions. The goal of the agent is to 
maximize the cumulative reward over time, which is 
achieved by learning a policy that maps states to actions 
(Wuest et al., 2016). 

The RL problem can be formulated as a Markov Decision 

Process (MDP), defined by a tuple (𝑆, 𝐴, 𝑃, 𝑅, 𝛾), where 𝑆 

is the state space, 𝐴 is the action space, 𝑃 is the transition 

probability matrix, 𝑅 is the reward function, and γ is the 
discount factor (Sutton and Barto, 2020). The agent’s goal 

is to learn a policy 𝜋: 𝑆 → 𝐴 that maximizes the expected 
cumulative discounted reward: 

𝐽(𝜋) = 𝐸𝜋 [∑ 𝛾𝑡𝑟𝑡

∞

𝑡=0

] 

where 𝑟𝑡 is the reward received at time step 𝑡. 
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One of the most popular RL algorithms is Q-learning 
(Watkins and Dayan, 1992), which learns an action-value 

function 𝑄(𝑠, 𝑎) that represents the expected cumulative 

reward for taking action 𝑎 in state 𝑠 and following the 
optimal policy thereafter. The Q-function is updated 
iteratively using the following rule: 

𝑄(𝑠𝑡, 𝑎𝑡) ← 𝑄(𝑠𝑡, 𝑎𝑡) + 𝛼 [𝑟𝑡 + 𝛾 max
𝑎

𝑄(𝑠𝑡+1, 𝑎) −  𝑄(𝑠𝑡, 𝑎𝑡)] 

where 𝛼 is the learning rate. 

In recent years, there has been a growing body of research 
exploring the application of reinforcement learning 
techniques to adaptive WIP control. Waschneck et al. 
(2018) applied Deep Q-Networks (DQN) for adaptive 
scheduling in semiconductor production, demonstrating 
improved performance over traditional heuristics.  DQN 
is an extension of Q-learning that uses a deep neural 
network to approximate the Q-function (Mnih et al., 
2015). Dittrich and Fohlmeister (2020) proposed a 
cooperative multi-agent system using RL for production 
control in job shop environments. Overbeck et al. (2021) 
utilized Proximal Policy Optimization (PPO) agents for 
decision-making in an automated assembly system, 
showing improvements in decision quality and production 
output over time. In the context of matrix production 
systems, Gankin et al. (2021) implemented a DQN-based 
approach for modular production control, while May et al. 
(2021) explored an economic bidding approach using RL 
to increase utilisation efficiency.  

These studies have shown promising results in terms of 
improved system responsiveness and efficiency. However, 
the application of RL to WIP control in semi-heterarchical 
architectures, particularly in environments with high 
variability, remains an area with significant potential for 
further exploration and improvement, as highlighted in 
our problem formulation. 

2.3 Semi-Heterarchical Architectures in 

Manufacturing 

Traditional manufacturing control architectures can be 
classified into two categories: centralized and 
decentralized (Trentesaux, 2009). Centralized 
architectures rely on a single decision-making entity that 
has complete control over the production system, while 
decentralized architectures distribute decision-making 
among multiple autonomous entities (Monostori, 2015). 

Semi-heterarchical architectures have emerged as a 
promising approach that combines the benefits of both 
centralized and decentralized control (Grassi et al., 2020). 
In a semi-heterarchical architecture, decision-making is 
distributed among multiple levels, with higher levels 
providing global coordination and lower levels handling 
local execution (Bendul and Blunck, 2019). This hybrid 
approach allows for greater flexibility and responsiveness 
to changes in the production environment while 
maintaining a degree of central control. 

Several studies have investigated the application of semi-
heterarchical architectures in manufacturing systems. 
Bendul and Blunck (2019) proposed a semi-heterarchical 
architecture for production planning and control in 
Industry 4.0 environments, highlighting its ability to 
handle complexity and uncertainty. Leitão et al. (2016) 
developed a semi-heterarchical architecture for self-
organized manufacturing systems, demonstrating its 
potential for improved adaptability and robustness. 
Converso et al. (2015) developed a system dynamics model 
for bed management strategy in healthcare units, 
showcasing the applicability of hierarchical approaches to 
complex systems management beyond traditional 
manufacturing settingv 

Grassi et al. (2020) proposed a novel semi-heterarchical 
architecture for manufacturing control (Figure 1), 
consisting of three main levels: (1) the Knowledge-based 
Enterprise Resource Planning (KERP) level, responsible 
for strategic decision-making and cloud-based 
coordination; (2) the High-Level Controller (HLC) level, 
which manages the overall performance of the production 
system; and (3) the Low-Level Controller (LLC) level, 
which handles the execution of production tasks at the 
shop floor level. In this architecture, the HLC plays a 
crucial role in managing the Work-In-Progress (WIP) 
levels of the production system, aiming to maintain 
optimal inventory levels and ensure smooth production 
flow. 

The HLC in the semi-heterarchical architecture proposed 
by Grassi et al. (2020) is responsible for dynamically 
adjusting the WIP levels based on the current state of the 
production system and the performance targets set by the 
KERP level. This adaptive WIP control mechanism allows 
the system to respond effectively to changes in demand, 
product mix, and production variability, improving overall 
system performance and resilience. owever, current 
methods struggle in highly variable and uncertain 
environments. Using advanced techniques like 
reinforcement learning for WIP control could significantly 

Figure 1: The semi-heterarchical architecture (inspired by 
(Grassi et al., 2020) 
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enhance responsiveness, efficiency, and overall 
performance in adaptive manufacturing control. 

3 Proposed Methodology 

3.1 Problem Formulation 

Consider a semi-heterarchical manufacturing control 
architecture, as proposed by Grassi et al. (2020), where the 
High-Level Controller (HLC) is responsible for adaptively 
controlling the Work-In-Progress (WIP) levels in a flow-
shop production system. The objective is to maintain 
optimal WIP levels that balance productivity and lead time 
in the face of varying demand and processing time 
variability. 

The flow-shop production system consists of 𝑚 machines 
arranged in series, where each job visits the machines in 
the same order. This setup aligns with recent research on 
Industry 4.0-enabled job-shop environments (Salatiello et 
al., 2022) and allows for the integration of digital twin 
concepts for enhanced system modeling and control 
(Rozhok et al., 2021). The processing times of jobs on each 
machine follow a gamma distribution, which allows for 
modeling a wide range of variability scenarios. The shape 
parameter α of the gamma distribution determines the 
level of variability, with α < 0.75 representing high 
variability, 0.75 < α < 1.25, representing moderate 
variability (e.g., in mass customization scenarios) and α > 
1.25 representing low variability (e.g., in standardized 
production). 

The HLC’s decision-making problem can be formulated 
as a Markov Decision Process (MDP), defined by the tuple 

(𝑆, 𝐴, 𝑃, 𝑅, 𝛾), where: 

• 𝑆 is the state space, representing the current state of 
the production system. The state variables include the 

current WIP level (𝑤), the critical WIP (𝑊0), equal to 
the number of machines in a balanced line, the 

normalized throughput target (𝑇𝐻𝑡𝑎𝑟𝑔𝑒𝑡), the error 

between the target and observed throughput (𝑒𝑡), and 

the coefficient of variation (𝐶𝑉) of the job processing 
times. Mathematically, the state at time t can be 
represented as: 

𝑠𝑡 =  [𝑤𝑡 , 𝑊0, 𝑇𝐻𝑡𝑎𝑟𝑔𝑒𝑡 , 𝑒𝑡 , 𝐶𝑉] 

The inclusion of the error term 𝑒𝑡 in the state 

representation provides the agent with information 

about the direction and magnitude of the deviation 

from the target throughput, enabling it to make more 

informed decisions. To leverage the findings of 

Vespoli et al. (2023) on the generalized performance 

estimation approach for CONWIP flow-shop 

systems, the DQN agent’s state space includes the 

normalized throughput rate (𝑇𝐻𝑛𝑜𝑟𝑚), which is the 

actual throughput rate scaled by the mean processing 

time. By incorporating this normalized throughput 

rate, the agent can learn a WIP control policy that is 

independent of the specific mean processing times 

and can be applied to various production scenarios 

with different processing time distributions without 

the need of further training step.  

• 𝐴 is the action space, representing the available WIP 

control actions. The action 𝑎 ∈  𝐴 corresponds to 
the WIP level to be set in the production system. 

• 𝑃 is the transition probability matrix, specifying the 
probability of transitioning from one state to another 
under a given action. 

• 𝑅 is the reward function, quantifying the performance 
of the system based on the difference between the 
normalized observed throughput and the normalized 
target throughput. The reward function is designed as 
a Gaussian function to encourage the HLC to 
maintain the actual throughput close to the target: 

𝑅 = exp (−
(𝑇𝐻𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑇𝐻𝑛𝑜𝑟𝑚)2

2 ∗  𝜎2
) 

where (𝑇𝐻𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑇𝐻𝑛𝑜𝑟𝑚)2 is the quadratic 

absolute difference between the normalized 
target throughput and the normalized observed 
throughput, and σ is a hyperparameter 
controlling the width of the Gaussian function. 
This reward function provides a smooth gradient 
signal to guide the learning process. 

• γ is the discount factor, balancing the importance of 
immediate and future rewards. 

The objective is to find an optimal WIP control policy 

𝜋∗: 𝑆 →  𝐴 that maximizes the expected cumulative 
discounted reward over an infinite horizon: 

π∗ = arg max
π

𝐸 [ ∑ γ𝑡𝑅(𝑠𝑡 , 𝑎𝑡)∞
𝑡=0 ∣∣ π ] 

where 𝑠𝑡 ∈  𝑆 and 𝑎𝑡 ∈  𝐴 are the state and action at time 

step 𝑡, respectively. 

3.2 Deep Q-Network (DQN) for Adaptive WIP 

Control 

To solve the formulated MDP and learn the optimal WIP 
control policy, we propose the use of a Deep Q-Network 
(DQN) as the HLC’s decision-making agent. The DQN 
architecture consists of an input layer taking the state 
variables, followed by two fully connected hidden layers 
with ReLU activation functions, and an output layer 
providing Q-value estimates for each available action. The 
specific architecture used in this study includes: 

• Input layer: 5 units (corresponding to the state 
variables); 

• Hidden layers: 2 layers with 64 units each, ReLU 
activation; 
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• Output layer: 21 units (corresponding to the 
discretized action space), linear activation. 

During training, the agent interacts with the simulation 
environment, observing states, selecting actions based on 
an ε-greedy exploration strategy, and receiving rewards. 
The experiences (state, action, reward, next state) are 
stored in a prioritized replay buffer, enabling efficient and 
stable learning. The DQN is updated using gradient 
descent to minimize the temporal-difference error 
between the predicted Q-values and the target Q-values 
obtained from the double Q-learning update rule.  

The exploration rate is decayed over time to gradually shift 
from exploration to exploitation. To enhance the 
adaptability of the DQN agent, an adaptive sigma 
mechanism is introduced. The width of the Gaussian 

reward function, controlled by the hyperparameter 𝜎, is 
dynamically adjusted during training based on the current 

training iteration. The value of 𝜎 starts at a higher value 
(e.g., 0.15) to encourage broader exploration in the early 
stages of training and gradually decreases to a lower value 
(e.g., 0.08) to focus on fine-tuning the policy in the later 
stages. This adaptive sigma mechanism allows the agent to 
effectively explore the state-action space and converge to 
a robust WIP control policy. 

4 Experimental Setup and Results 

4.1 Simulation Environment and Training 

Procedure 

The flow-shop production system is simulated using a 
custom environment developed with the Simpy library in 
Python. The environment is designed to be highly 
configurable, allowing for the modeling of different flow-
shop configurations and processing time variability. The 
experiments utilize the RLlib library, a scalable 
reinforcement learning framework built on top of Ray, 
which provides a wide range of reinforcement learning 
algorithms, including DQN, and offers distributed 
training capabilities for improved performance. 

The training procedure for the DQN agent involves the 
following steps: 

1. Initialize the DQN agent with random weights and 

the experience replay buffer 𝐷. 
2. For each episode:  

o Reset the simulation environment to its initial 

state 𝑠0. 

o For each time step 𝑡:  

▪ Observe the current state 𝑠𝑡 . 

▪ Select an action 𝑎𝑡 using the 𝜀-greedy 
strategy based on the current Q-network. 

▪ Apply the action 𝑎𝑡 to the simulation 

environment and observe the next state 𝑠𝑡+1 

and reward 𝑟𝑡 . 

▪ Store the experience tuple (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1) in 

the replay buffer 𝐷. 

▪ Sample a mini-batch of experiences from 𝐷 
and perform a training step: 
o Compute the target Q-values using the 

double Q-learning update rule. 
o Update the Q-network parameters using 

gradient descent to minimize the 
temporal-difference error. 

o Update the priorities of the sampled 
experiences based on the absolute 
temporal-difference error. 

3. Repeat the training process for a specified number of 
episodes test on scenarios with different variability 
levels and throughput targets. 

The hyperparameters of the DQN agent, such as the 
learning rate, discount factor, and exploration rate, are 
tuned using Ray Tune, a scalable hyperparameter tuning 
library, to ensure the best performance. During training, 
the agent's performance is monitored using TensorBoard, 
a visualization toolkit for machine learning. 

4.2 Training Results 

The training progress of the DQN agent is evaluated using 
several metrics, including the gradient norm, temporal-
difference (TD) error, and episode statistics (minimum, 
mean, and maximum reward). 

Figure 2 shows the gradient norm and the the TD error 
during training. The gradient norm measures the 
magnitude of the gradients used to update the Q-network 
parameters. A stable and decreasing gradient norm 
indicates that the agent is converging towards an optimal 
policy. The results demonstrate that the gradient norm 
stabilizes and decreases over time, suggesting successful 

Figure 2 – Gradient Norm and Temporal Difference 

(TD) over steps during training 

Figure 3 - Episode rewards over time for the DQN 

agent, displaying the range and mean values 
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learning of the WIP control policy. The TD error, instead, 
represents the difference between the predicted Q-values 
and the target Q-values obtained from the double Q-
learning update rule. A decreasing TD error indicates that 
the agent's predictions are becoming more accurate and 
consistent with the observed rewards. The results show a 
steady decrease in the TD error, confirming the 
effectiveness of the learning process.  

Figure 3 summarizes the episode statistics, illustrating the 
minimum, mean, and maximum rewards achieved by the 
DQN agent during training. The shaded area represents 
the range between the minimum and maximum rewards, 
while the solid line indicates the mean reward per episode. 
The episode reward reflects the cumulative reward 
obtained by the agent in each episode. The increasing 
trend in the mean episode reward, along with the 
narrowing range, suggests that the agent is learning to 
make better decisions and stabilize the WIP control policy 
over time. 

4.3 Validation Results 

To validate the performance of the trained DQN agent, 
several test scenarios are designed with varying throughput 
targets and processing time variability. The agent’s ability 
to adapt to changing production conditions and maintain 
the desired throughput while minimizing WIP levels is 
evaluated.  

Figure 4 illustrates the WIP control behavior of the DQN 
agent for different throughput targets. The results 
demonstrate that the agent effectively adjusts the WIP 
levels to maintain the actual throughput close to the target 
throughput. When the target throughput is increased, the 
agent responds by allowing higher WIP levels to meet the 
demand. Conversely, when the target throughput is 
decreased, the agent reduces the WIP levels to minimize 
inventory and maintain efficiency. 

Figure 5 presents the WIP control performance of the 
DQN agent under different levels of processing time 
variability, represented by the coefficient of variation 
(CV). The results show that the agent adapts its WIP 
control policy based on the processing time variability. 
When the variability is high (lower CV), the agent 
maintains slightly higher WIP levels to buffer against the 
increased uncertainty and maintain the target throughput. 
Conversely, when the variability is low (higher CV), the 
agent reduces the WIP levels to minimize inventory while 
still achieving the desired throughput. 

These validation results demonstrate the adaptability and 
robustness of the proposed DQN-based WIP control 
approach. The agent effectively learns to make dynamic 
decisions based on the current production conditions, 
considering the throughput targets and processing time 
variability. The ability to adapt the WIP levels in real-time 
enables the manufacturing system to maintain a balance 
between productivity and lead time, leading to improved 
overall performance. 

5 Conclusion 

In this paper, we proposed a novel adaptive WIP control 
approach for semi-heterarchical manufacturing systems 
using deep reinforcement learning. The proposed 
approach addresses the challenges of managing 
production variability and meeting throughput targets in 
the context of Industry 4.0 and mass customization. By 
leveraging the capabilities of Deep Q-Networks (DQN) 
and integrating them with a stochastic simulation 
environment, the proposed approach enables real-time 
decision-making and dynamic adjustment of WIP levels 
based on the current production conditions. 

The experimental results validate the performance and 
adaptability of the DQN-based WIP control approach. 
The training results show stable learning progress, with the 
agent converging towards an optimal WIP control policy. 
The validation results demonstrate the agent’s ability to 
adapt to changing production conditions, such as varying 
throughput targets and processing time variability. By 
dynamically adjusting the WIP levels, the proposed 

Figure 4 - The DQN agent’s WIP control, with 

changing 𝑻𝑯𝒕𝒂𝒓𝒈𝒆𝒕 value 

Figure 5 - The DQN agent’s WIP control, with 

changing 𝑪𝑽 value 
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approach enables the manufacturing system to maintain a 
balance between productivity and lead time, leading to 
improved overall performance. 

The robustness of the proposed approach is evidenced by 
its adaptability to various processing time variabilities and 
throughput targets. However, practical implementation 
may face challenges such as computational resource 
requirements and the need for high-quality historical data. 
Future research should focus on extending the approach 
to more complex manufacturing systems, incorporating 
additional production objectives, and developing 
strategies to reduce implementation barriers, making the 
system more accessible to a wider range of manufacturing 
environments. 
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