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Figure 1.The boundaries of the system 
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Abstract: In the context of an increasingly renewable and volatile global energy landscape, our project introduces an 
innovative multi-energy optimization tool designed to minimize energy costs and environmental impacts in complex 
industrial plants. Leveraging advanced AI (Artificial Intelligence) techniques, including genetic multi-objective 
optimization with forecasted inputs, we developed and simulated a tool that dynamically allocates energy flows across 
plant systems, ensuring economic efficiency and ecological sustainability. Integrating predictive analytics for PV 
(Photovoltaic) production and electricity price forecasting, the model adeptly navigates the complexities of renewable 
energy sources and fluctuating market prices. The simulations elucidate that the optimization model exhibits enhanced 
efficacy within manufacturing facilities characterized by higher redundancy of energy systems, integration of 
intermittent renewable sources, and deployment of energy storage solutions. For an average energy-intensive facility, 
the model is projected to reduce the carbon footprint associated with energy consumption by up to 15% and facilitate 
a reduction in energy costs by up to 10%, demonstrating its substantial potential in promoting environmental 
sustainability and economic efficiency in industrial energy management. This work not only showcases the potential 
for AI in enhancing the efficiency and resilience of renewable energy systems but also sets a benchmark for future 
developments in the energy sector's transition towards sustainability. Moreover, this methodology's applicability 
extends beyond energy systems to all plant utilities, including water management, and can be adapted for production 
process management, offering a comprehensive approach to optimizing operational efficiencies across a broader 
spectrum of utility management and production processes. The main limitation encountered lies in the current cost 
and complexity of processes digitalization, which, however, is decreasing thanks to increasingly accessible 
communication technologies. 
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1. Introduction 

The contemporary global energy landscape is marked by 
escalating demand, dwindling non-renewable resources and 
growing environmental concerns (IEA - International 
Energy Agency, 2023). The industrial sector, being one of 
the largest consumers of energy worldwide, is at the 
forefront of this challenge. It faces the dual pressure of 
reducing energy costs for economic viability and 
minimizing environmental impacts to meet increasingly 
stringent regulations and societal expectations (Armaroli 
and Balzani, 2007), (Kesicki and Yanagisawa, 2015). The 
situation is further complicated by the volatility of energy 

prices and the urgent need for transition towards 
sustainable energy sources (Rintamäki et al., 2017). 

In response to these challenges, optimizing energy use in 
industrial plants has emerged as a critical necessity rather 
than a choice. Efficient energy management not only 
contributes to cost savings but also significantly reduces the 
environmental footprint of industrial operations 
(Borowski, 2021), (Li et al., 2020), (Rot et al., 2020). 

We began our journey towards developing this idea by 
asking ourselves this question: “What is the best way to 
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Figure 2.Conceptual algorithm structure 

manage the energy systems of a plant in a manner that is 
both economically and environmentally sustainable?” 

This paper introduces an innovative multi-energy 
optimization tool designed specifically for the industrial 
sector. The tool explores computational models to identify 
optimal configurations of energy use that minimize costs 
and environmental impacts simultaneously. Artificial 
Intelligence (AI) stands at the core of our multi-energy 
optimization tool, enabling it to analyse vast datasets, 
predict energy demands, and simulate the impact of 
different optimization strategies under varying conditions.  

2. Literature Overview 

The application of artificial intelligence is rapidly evolving 
across various fields of engineering and beyond, impacting 
every sector. When faced with decision-making problems 
that involve multiple decision drivers, the extensive use of 
multi-objective optimization algorithms (MOO) becomes 
prevalent. These are applied to a wide range of issues, 
including the sizing of energy systems, reduction of 
emissions, and cost minimization of energy. Among the 
optimization algorithms most frequently employed are 
those of the genetic type. GMO (Genetic Multi-objective 
Optimization) techniques mimic natural selection 
processes to solve complex optimization problems that 
involve competing objectives (Karami and Dariane, 2022). 
The review in (Cui et al., 2017) offers a comprehensive 
overview of 28 applications. GMO algorithms are 
employed in 9 out of the 28 studies reviewed, targeting very 
specific applications, primarily for sizing purposes and the 
development of solutions to static problems. Other similar 
applications are presented in (Liu et al., 2022), (Zhang et al., 
2022), (Moretti and Panzieri, 2013), (Hajinezhad et al., 
2023), (Alzahrani et al., 2023). In (Liu et al., 2022), an 
interesting resolution approach is featured, as it combines 

the forecasting of renewable resources with optimization. 
In our work, building on the previously cited studies, we 
have introduced a dynamic algorithmic framework for the 
use of GMO combined with predictive methods, which, 
according to our best researches, has not been documented 
in the available literature. 

2.Materials and Methods 

The proposed methodology is articulated through a 
structured, three-phase approach: Plant Virtual Modeling, 
Energy Forecasting and Optimization. Each phase is 
intricately designed to transform empirical observations 
into a comprehensive mathematical model, facilitating the 
application of heuristic algorithms for effective problem-
solving. 

2.1. Plant Virtual Modelling 

The initial phase, plant virtual modelling, constitutes the 
core foundation of our algorithmic design. This intricate 
process involves the mathematical encapsulation of the 
physical plant operations, focusing on converting the 
complex dynamics of industrial processes into quantifiable 
models. So, to effectively model the energy system of a 
plant or a specific segment of it, a comprehensive set of 
equations is imperative. These equations originate from the 
analysis of energy inputs (energy sources) and the 
corresponding outputs required to meet the operational 
energy demands (energy loads) of the business. The 
objective is to ensure that the energy requirements of the 
business activities are fully met by the capabilities of the 
energy plants. Each energy system is characterized by 
distinct operational features and efficiency levels. The 
primary energy demand is influenced by both the 
configuration of the energy system and the specific 
demands of the business operations.  

To mathematically represent a generalized 
plant energy system, it is essential to develop a 
suite of equations that include: 

Energy carriers balance equations: these equations 
account for the supply and demand balance 
within the energy system of the plant, ensuring 
that the generated power meets the 
operational needs without significant surplus 
or deficit. As an example, electrical and 
thermal balance equations are normally 
necessary.  

Constraints equations: in addition to balance 
equations, these constraint equations play a 
pivotal role in accurately depicting the 
operational limitations and regulatory 
requirements that the energy system must 
adhere to.  

To obtain a comprehensive and functional 
model of a plant's energy system, balance 
equations and constraint equations must be 
integrated into a cohesive mathematical 
system. Solving this system is essential for 
deriving a complete solution that accurately 
represents the operational dynamics of the 
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energy system. For the mathematical model to be solvable 
and meaningful, it is mandatory to ensure the system's 
feasibility. Achieving feasibility involves structuring 
additional equations or relationships that align the variables 
and parameters within the system. 

The endeavour is twofold: (i) Mathematical modelling 
employing both linear and nonlinear equations, derived 
from historical data and trend analyses, and (ii) Statistical 
modelling through neural network training and forecasting 
methodologies. 

Mathematical modelling is initiated by defining pertinent 
variables and parameters that accurately represent the 
system’s operational characteristics. Through methodical 
data interpolation, graphical representations were 
constructed, which are then extrapolated to develop 
functional relationships. This approach not only minimizes 
computational demands but also ensures precision and 
determinacy in the resulting models. For interpolation of 
data Microsoft Excel interpolation function was used. 

However, despite the efficacy of mathematical modelling in 
encapsulating the dynamism of industrial operations, this 
approach is not devoid of significant limitations. Primarily, 
the accuracy and reliability of mathematical models hinge 
on the depth of understanding of the system's mechanisms 
and the precise definition of operational variables and 
parameters. This complexity necessitates a comprehensive 
study and expertise in the system being modelled, imposing 
a steep learning curve and demanding considerable human 
input for equation development. Secondarily, a critical 
limitation of using linear and nonlinear equations lies in the 
prerequisite for data correlation and the ability to 
interpolate functions without significant deviations. The 
models are predicated on the assumption that empirical 
data can be accurately represented through mathematical 
equations, a condition not always met. For the interpolation 
to be considered of "quality," it must closely mirror the 
operational realities without introducing substantial errors 
or variations. However, not all datasets satisfy this 
constraint, limiting the applicability of mathematical 
modelling across different industrial scenarios. 

On the other hand, neural network-based modelling 
represents a significant shift from “traditional” 
mathematical approaches. At its core, a neural network is a 
computational system inspired by the structure and 
functional aspects of biological neural networks in the 
human brain. It consists of interconnected layers of nodes 
or "neurons," each designed to process inputs and generate 
outputs based on learned patterns. This architecture 
enables neural networks to learn from and make 
predictions about data in a way that mimics human 
cognition (Basheer and Hajmeer, 2000). 

The principal advantage of employing neural networks lies 
in their ability to model complex, nonlinear dynamics 
without the explicit need for defining underlying 
mathematical equations. Unlike mathematical modelling, 
which relies on a deep understanding of the system’s 
mechanics and precise variable definition, neural networks 
learn directly from data, identifying patterns and 
relationships through iterative training processes. This 

capability allows for modelling of systems with high degrees 
of uncertainty and variability, where traditional equation-
based approaches might falter due to the intricacies of the 
system's behaviour or when the relationships between 
variables are not clearly defined or understood. However, 
this advantage is not without its challenges and limitations. 
The "black box" nature of neural networks, where the 
decision-making process is not transparent, makes it 
difficult to interpret how inputs are transformed into 
outputs. Furthermore, neural networks require large 
amounts of data for training to achieve high accuracy and 
generalizability. This dependency on extensive datasets can 
be a hurdle in scenarios where data is scarce, expensive to 
acquire, or contains significant noise. In addition, the 
training of complex neural networks is computationally 
intensive and time-consuming. 

Neural networks are readily accessible through various 
Python libraries, which offer powerful tools for building 
and training custom neural network models with extensive 
support, “democratizing” access to advanced predictive 
modelling and analysis tools. In this algorithm, TensorFlow 
and Keras libraries have been used (Abadi et al., n.d.), 
(François Chollet, 2015). 

2.2. Energy Forecasting 

Following the complex phase of plant virtual modelling, the 
next critical step in developing the algorithm involves 
energy forecasting. This phase is pivotal in predicting the 
future availability of energy from renewable sources, 
specifically photovoltaic (PV) systems installed on 
rooftops, and forecasting energy prices in relation to 
national prices. To tackle these forecasting challenges, two 
distinct neural networks aimed at providing rapid estimates 
of both energy availability from PV systems and future 
energy prices were designed. The first neural network 
focuses on forecasting the energy output of PV systems. By 
leveraging historical data on sunlight exposure, weather 
conditions, and the performance characteristics of the PV 
installations, this model is trained to predict the amount of 
energy that can be generated over future periods (Laudani 
et al., 2020). The second neural network is tasked with 
predicting future energy prices, taking into account various 
factors such as market trends, demand and supply 
dynamics that could influence the PUN (Italian National 
Price) (Basso Alice, 2020). 

The topic of energy forecasting, particularly the prediction 
of energy production from photovoltaic (PV) systems and 
the forecasting of energy prices, is well-documented in 
literature and supported by numerous commercial services 
offering detailed insights via API connections (“Solar 
panels energy prediction - OpenWeatherMap,” n.d.), 
(Kohl, n.d.), (“Electricity Price Forecasting Software 
Services Solutions,” n.d.). While recognizing the 
importance and the established base of knowledge in this 
area, our work primarily focused on the development and 
refinement of the plant virtual modelling and optimization 
phases. 

2.3. Optimization 

The optimization phase of our algorithm represents the 
final moment where the mathematical system of the plant 
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is dynamically calculated at every timestep (t). This process 
is meticulously evaluated through a multi-objective genetic 
optimization algorithm, leveraging two critical fitness 
functions: the environmental fitness function (OME-Ottimo 
Model Environment) and the economic fitness function (OMC 
– Ottimo Model Cost). The environmental fitness function 
assesses the carbon footprint associated with the plant's 
energy consumption, aiming to identify solutions that 
minimize environmental impact. Concurrently, the 
economic fitness function evaluates the cost implications 
of energy usage, seeking to optimize financial efficiency. 
This dual-focus approach allows for a balanced 
consideration of both sustainability and economic viability 
in the plant's operations. 

𝑂𝑀𝐸 =  ∑ 𝑂𝑀𝐸(𝑡)

𝑛

𝑡=1

 

𝑂𝑀𝐶 =  ∑ 𝑂𝑀𝐶(𝑡)

𝑛

𝑡=1

 

Multi-objective optimization is an advanced method used 
to solve problems involving several conflicting objectives. 
Unlike single-objective optimization, which focuses on 
finding a single optimal solution, multi-objective 
optimization aims to identify a set of optimal solutions, 
considering that improvements in one objective may lead 
to compromises in another. This approach is particularly 
suited to complex systems where trade-offs between 
different goals, such as cost and environmental impact, 
must be carefully managed. 

Genetic algorithms (GAs) are a family of computational 
models inspired by natural selection and genetics (Cui et al., 
2017). They are particularly effective for solving 
optimization problems in complex and dynamic systems. 
The Non-dominated Sorting Genetic Algorithm II 
(NSGA-II) is a highly regarded version of GA, renowned 
for its efficiency in handling multi-objective optimization 
problems (Deb et al., 2002). NSGA-II operates by 
generating a population of potential solutions, evaluating 
them based on the defined fitness functions, and then using 
selection, crossover, and mutation processes to evolve 
these solutions over successive generations. Through 
Python language, is it possible to implement GAs through 

many available libraries. In Ottimo Algorithm Pymoo 
Library has been used (Julian Blank, 2020).  

The culmination of the NSGA-II's optimization process is 
the identification of the Pareto set, which contains the 
optimal solutions discovered through the algorithm's 
iterations. Named after economist Vilfredo Pareto, the 
Pareto set comprises solutions that are considered Pareto 
optimal, meaning that no other solutions are superior in all 
objectives (Karami and Dariane, 2022), (Deb et al., 2002). 
Each solution within this set represents a possible strategy 
for managing and operating the plant's energy systems, 
illustrating different trade-offs between cost and 
environmental impact. The Pareto set serves as a crucial 
decision-making tool, providing stakeholders with a range 
of optimized solutions that balance economic and 
environmental considerations. 

To select the most appropriate solution from the Pareto set 
for implementation, a decision-making process (DMP) 
must be set. In Ottimo Algorithm DMP is performed by 
implementing a weighted optimal solution approach, which 
leverages a configurable parameter: the shadow carbon 
price. The shadow carbon price assigns an economic value 
to carbon emissions, effectively quantifying the cost of 
CO2 emissions in financial terms (Fawson et al., 2019). By 
integrating the shadow carbon price into our optimization 
framework, we are able to give CO2 emissions an economic 
weight, making environmental and economic 
considerations directly comparable. 

This section of the article outlined the integration of plant 
virtual modelling, energy forecasting, and optimization 
within a comprehensive framework. Employing 
mathematical and neural network-based modelling, we 
forecast energy needs and prices, subsequently leveraging a 
multi-objective genetic algorithm (NSGA-II) with a 
weighted optimal solution approach to balance economic 
and environmental objectives, ultimately guiding strategic 
plant energy management decisions. 

3. Results 

The simulation environment was meticulously designed to 
replicate the complex dynamics of industrial energy 
systems, as outlined in materials and method section. It 
incorporated variables such as energy demand fluctuations 
throughout the day, variable energy production from 
renewable sources like solar PV, and fluctuating energy 

Figure 3. Pareto set: output of optimization process 
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prices for the energy grid (both for electricity and fuels 
consumption). The simulation parameters were defined by 
taking as an example a large manufacturing plant located in 
Northern Italy. This setup allowed for a comprehensive 
assessment of the optimization tool's performance under 
realistic industrial conditions. 

Table 1. Simulation parameters 

Simulation Parameter Value 

Natural Gas Boiler Size 25 MW 

Photovoltaic Plant Size 10 MWp 

Heat Pumps Size 7 MW 

Eletric Boiler Size 12 MW 

Yearly High Temp. (120°C) Thermal 
factory demand 

200 GWh 

Yearly Low Temp. (60°C) thermal 
factory demand 

25 GWh 

Yearly Direct (No Heat Generation) 
Electrical factory demand 

100 GWh 

 

We tested the two operative models (“manual” vs 
optimized genetic) with the above simulation parameters 
(Table 1) and with the hourly energy requirement trend 
from different yearly seasonal periods (February, June, 
September) and with the hourly market energy prices 
(electricity and natural gas) from 9 different weeks of the 
past three years (Table 2). The "manual" operative model 
was structured to reproduce the current non-automated 
plant management example plant. 

Table 2. Simulation timeframes and IDs 

 

For each week, the relevant simulation was performed, 
comparing the performance achieved by the genetically 
optimised management system with the fixed management 
system normally implemented in a manufacturing plant and 
the savings achieved were noted, both in terms of carbon 
footprint and energy supply costs. Also, the simulation 
parameters were modified to model different future 
scenarios. In particular, the photovoltaic system size was 
changed to 40 MWp (over 400% of the initial size) to study 

the effect of the increase renewable energy availability on 
the possible attainable savings. 

Table 3. Base scenario: cost simulation results 

Simulation 
ID 

Cost SAVING 
[k€] 

Relative Cost 
SAVING [%] 

1 8 - 5,5% 

2 7 - 6,7% 

3 12 - 5,6% 

4 10 - 4,1% 

5 16 - 4,8% 

6 30 - 3,7% 

7 30 - 3,8% 

8 50 - 4,5% 

9 85 - 4,1% 

 

Table 4. Base scenario: enviromental simulation results 

Simulation 
ID 

Environmental 
SAVING 
[tonCO2eq] 

Relative 
Environmental 
SAVINGS [%] 

1 80 - 8% 

2 90 - 12% 

3 90 - 11% 

4 80 - 10% 

5 80 - 11% 

6 80 - 10% 

7 70 - 8% 

8 80 - 11% 

9 110 - 14% 

 

Discussion 

A comparative analysis was conducted to highlight the 
optimization tool's advantages over traditional energy 
management approaches. The genetic model achieved an 
average cost reduction of 10% across various energy 
scenarios, alongside a 15% decrease in carbon footprint, 
compared to the reference management model. 

The analysis of the simulation results demonstrated the 
multi-energy optimization tool's effectiveness in reducing 
energy costs and minimizing environmental impacts. For 
instance, in a scenario with high renewable energy 
availability, the tool dynamically shifted energy 
consumption patterns to capitalize on lower-cost 
renewable energy, resulting in significant cost savings and a 

Energy Price 

Simulation Year 

Energy Price 

Simulation Week 

Simulation 

ID 

2020 February 10th-16th 1 

June 15th-21th 2 

September 14th-20th 3 

2021 February 15th-21th  4 

June 14th-20th  5 

September 13th-19th  6 

2022 February 14th-20th  7 

June 13th-19th  8 

September 12th-18th  9 
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reduction in carbon emissions. Conversely, during periods 
of low renewable availability or high demand, the tool 
strategically utilized energy storage or drew from the grid 
to maintain operational efficiency without compromising 
cost savings or environmental benefits. 

Furthermore, in the scenario where the size of the 
photovoltaic plant was increased, the optimisation model 
proved to be even more effective when compared to the 
standard plant management model. This confirms that as 
complexity increases (i.e. number of plants to be controlled, 
variability of energy prices, large availability of renewable 
sources), rigid plant management is no longer efficient, 
when compared to new optimised models such as the one 
presented in this study. 

Table 5. Enviromental savings: 9MW vs 40MW scenario 

Table 6. Cost savings: 9MW vs 40MW scenario 

Simulation 
ID 

10 MW PV 
Relative Cost 
SAVING [%] 

40 MW PV 
Relative Cost 
SAVING [%] 

1 - 5,5% - 7,0% 

2 - 6,7% - 16,0% 

3 - 5,6% - 8,9% 

4 - 4,1% - 7,2% 

5 - 4,8% -13,7 % 

6 - 3,7% - 6,0 % 

7 - 3,8% - 5,9% 

8 - 4,5% - 12,2 % 

9 - 4,1% - 7,3% 

 

  

 

 

 

 

 

 

 

5. 

Conclusion 

This research underscores the significant potential of 
artificial intelligence (AI) and optimization algorithms in 
aiding the industrial sector to meet sustainability targets by 
optimizing energy use from both economic and 
environmental perspectives. Our findings reveal that these 
technological advancements not only enhance energy 
efficiency but also contribute to a more sustainable 
operational framework. 

However, the high initial costs for digitalization, heavy 
reliance on data quality, and significant computational 
resource requirements are notable limitations. 
Customization might be necessary due to the specific 
configurations of different industrial plants, affecting the 
tool's generalizability. 

Future research should focus on integrating emerging 
technologies like IoT and novel machine-learning models  

for better data acquisition, transparency and manipulation. 
Expanding the optimization models to other utility 
management systems and enhancing predictive analytics 
through machine learning can further optimize energy 
usage and cost reductions. 

Developing user-friendly interfaces will facilitate broader 
adoption, and conducting long-term impact studies can 
provide robust evidence of the tool's benefits, identifying 
areas for improvement in operational efficiency and 
sustainability 

Building on this foundation, we are in the process of 
developing a product named "Ottimo - AI Energy Advisor." 
By harnessing the power of AI techniques outlined in our 
research, "Ottimo - AI Energy Advisor" seeks to make 
sustainable energy management accessible and actionable, 
breaking down the complexity of AI integration and driving 
forward the sustainability agendas of industries and 
companies alike.  

 

 

Figure 4. Ottimo logo 
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