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Abstract: The Industry 5.0 paradigm aims to improve, through a human-centric approach, the performance of cyber-physical 
production systems promoted by the fourth industrial revolution. If, on the one hand, the digitisation promoted by the Industry 4.0 
paradigm provides many opportunities for improving the performance of production systems, on the other hand, it introduces a 
high level of complexity for operators in the execution of ordinary activities mainly from a cognitive point of view. The complexity 
of tasks and the increasing use of innovative technologies could overload the operator with numerous options and efforts to be 
made in a limited time, requiring decisions that lead to an excessive cognitive workload and reduce human well-being in work 
environments. In this context, maintenance activities are of utmost relevance; their inherent complexity and the direct dependence 
of the production performance on their proper and timely execution led to the development of dedicated support technologies and 
techniques known as Maintenance 4.0 (M4.0). Notably, M4.0 activities are strongly characterised by the above-outlined complexities, 
especially from a cognitive point of view. To this concern, the present research work consists of developing, through a literature 
search, a framework of the main M4.0 tasks aiming to identify the perceived cognitive workload according to the operator's profile 
(i.e., competencies, hard skills, age, etc.). This framework, as mentioned, represents the starting point for more in-depth analyses 
that will allow the identification of the proper operator to accomplish a high-cognitive M4.0 task by ensuring operator well-being 
and industrial performance.  
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1.Introduction 

Building upon the technological advancements of Industry 
4.0 (I4.0), Industry 5.0 (I5.0) seeks to enhance the 
performance of cyber-physical production systems. This 
evolution is driven by a human-centric approach, 
emphasizing the importance of human-machine 
collaboration in leveraging the technologies and principles 
of the fourth industrial revolution (European Commission, 
n.d.). If, on the one hand, I4.0 drives advancements in both 
production efficiency and quality through the development 
and deployment of advanced technologies (Lucchese et al., 
2022), on the other hand it has a key limitation in its 
neglection of industrial sustainability and worker well-being 
(Huang et al., 2022; Mignoni et al., 2023). Consistently with 
the I4.0 paradigm, the traditional view of industrial workers 
collaborating with automation systems has given way to the 
concept of the "operator 4.0." (Digiesi et al., 2020). This 
new paradigm emphasizes the integration of operators 
within cyber-physical systems, empowering them to 
leverage and augment their physical and cognitive skillsets 
(Kaasinen et al., 2020). If, on the one hand, employing 
technologies to enhance the inherent capabilities of the 
operator enhances manufacturing system flexibility, 
(Enrique et al., 2021), on the other hand, this introduces 
the challenge of managing complex human-machine 
systems. (Guerin et al., 2019), wherein operators are 
susceptible to cognitive overload because of the increased 
complexity of their routine tasks (MADONNA et al., 
2019). To overcome this limit, I5.0 promotes social 

sustainability, respecting planetary boundaries and 
promoting talent, diversity, and empowerment (Huang et 
al., 2022). Abandoning a purely profit-oriented perspective, 
I5.0 is based on three core pillars: a human-centric 
approach that prioritizes human well-being within 
production processes, a commitment to sustainability, and 
the fostering of resilience (Zizic et al., 2022). Consistent 
with these principles, I5.0 profoundly restructures human 
tasks, shifting the labour from manual to cognitive (Longo 
et al., 2020); within the context of a fifth-generation smart 
factory, skilled workers are expected to perform high-value 
production tasks, identify and rectify deviations from 
standardized procedures, and possess a comprehensive 
understanding of the standardization and legal frameworks 
governing technology, societal considerations, and 
management practices (Maddikunta et al., 2022).  

In this scenario, one of the main topics that have gained 
researchers' attention is the employees' attitude towards the 
digital transformation processes in the maintenance sector. 
The maintenance tasks represent one of the most expansive 
investments required for the current industrial 
transformation, where most companies are experiencing 
significant worker hesitation to adopt new technologies 
(Rathi et al., 2022). While not directly contributing to 
product value, maintenance tasks represent a significant 
cost burden for companies, ranging from 15% to 70% of 
their budget depending on the chosen maintenance policy 
(D. S. Thomas, 2018). Inefficient maintenance policies can 
have an adverse impact on companies. These negative 
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effects can manifest in several ways, including reduced 
safety levels, increased occurrences of unplanned 
downtime, operational inefficiencies, shortened lifespans 
of assets, and ultimately, escalated costs.  

Several factors contribute to the complexity of a 
maintenance task. These include working within running 
production processes, facing time constraints, and dealing 
with complex machinery comprised of several 
components, each necessitating a distinct understanding of 
specific methods and procedures (Alhaag et al., 2022). The 
inherent complexity and criticality of maintenance tasks led 
to the development of a paradigm known as Maintenance 
4.0 (M4.0). According to this paradigm, advanced 
monitoring systems enable the application of predictive 
maintenance policies. By minimizing both the cost of 
maintenance activities and the risk of plant downtime, these 
policies promote enhanced production efficiency (Zonta et 
al., 2020). Moreover, the integration of different I4.0 
enabling technologies is being explored to improve the 
effectiveness and management of maintenance operations. 
The implementation of Augmented Reality (AR) 
technologies to support the operator in performing 
maintenance activities is the most significant example in 
this context (Psarommatis et al., 2023; Zonta et al., 2020). 
AR can support maintenance tasks, offering step-by-step 
guidance for diagnostics, inspection, and training 
operations (Gattullo et al., 2019; Roy et al., 2016).  

While I4.0 technologies offer potential to empower 
operators in handling novel maintenance tasks, their 
complexity and the integration of innovative technologies 
can present challenges. Operators may indeed face 
information overload due to the multitude of options and 
time constraints, leading to excessive Cognitive Workload 
(CWL).  This aligns with the human-centric focus of the 
I5.0 paradigm, which necessitates considering CWL during 
the design of maintenance tasks. Calibrating CWL for 
maintenance operators during their routine activities can 
improve working conditions, reduce error rates associated 
with high CWL, and ultimately contribute to enhanced 
production performance. However, to achieve this goal, it 
is necessary to know the characteristics of the main M4.0 
tasks, as well as those of the operators that most influence 
their proper performance. To this concern, the objective of 
the present work consists of building a framework of the 
main M4.0 activities. To achieve this, a Systematic 
Literature Review (SLR) has been conducted to 
understand, in addition to the tasks reported in the 
literature, also the characteristics of each task and the 
contexts in which they have been considered. In this way, 
it will be possible to develop models and tools that are 
effective in supporting the assignment of maintenance 
operations at the industrial scale. 

The rest of the paper is organised as follows: in the second 
section, the research methodology adopted to carry out the 
SLR and to analyse the obtained results is illustrated. Then, 
in Section 3, the M4.0 tasks framework is presented and the 
obtained results are illustrated and discussed. Finally, in 
section 4, the conclusions of the present work with insights 
for future studies are provided. 

2. Research Methodology 

To achieve the objective of this work, i.e., to identify a 
framework of the main M4.0 tasks, a SLR has been 
conducted. It effectively gathers all available evidence in the 
literature to address a specific research question in a 
thorough and unbiased manner, thereby providing results 
from which conclusions can be drawn and decisions made 
(OXMAN & GUYATT, 1993).  For carrying out the SLR, 
the steps recommended by the Preferred Reporting Items 
for Systematic reviews and Meta-Analyses (PRISMA) 
statement have been followed. According to the PRISMA 
methodology, the phases of which a systematic review 
process is composed are four, i.e., identification, screening, 
eligibility, and inclusion (Moher et al., 2009). Two authors 
have independently read, selected, and analysed the articles 
to minimize interpretation biases. They have compared 
their results and harmonized them under the supervision of 
another author. The combined findings are presented in the 
current and subsequent sections. Figure 1 provides an 
overview of the review phases conducted.  

 
Figure 1: PRSIMA 2020 flow diagram employed for 

carrying out the SLR. Adapted from (Page et al., 2021). 

As it can be observed from Figure 1, in the context of the 
first phase, a search has been performed on Scopus, due to 
its broader coverage for industrial engineering (Ren et al., 
2019). To this concern, the query “maintenance" AND 
"task" OR "activity" AND "Industry 4.0" OR "Industry 
5.0" AND "description" OR "classification" OR 
"taxonomy" OR "type” has been employed to conduct the 
research on documents’ title, abstract and keywords. 
Including all available records without time restrictions, 88 
documents have been identified as the sample for the 
screening phase (i.e., the second step of the PRISMA 
methodology). The documents have been screened by 
analyzing their titles and abstracts and have been selected 
for full-text reading if they met one eligibility criterion., i.e., 
if they mentioned the description of maintenance 
procedures, routines, activities or tasks. At the end of the 
screening phase, 15 papers have been found that meet the 
eligibility criterion and have been fully read. Subsequently, 
12 papers have been excluded for non-conformity with the 
research conducted, resulting in a sample of 3 papers. 
Moreover, 4 papers identified through the snowballing 
approach (Wohlin, 2014) have been added to the final 
sample of documents (Figure 1). Finally, 7 studies have 
been included (i.e., the last step of the review process 
according to the PRISMA methodology) in the final sample 
of studies on which a descriptive and thematic analysis have 
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been conducted, whose results are illustrated in the 
following section. Thus, the descriptive analysis has 
investigated the composition of the sample in terms of 
publication type and research type, as well as the trend over 
the years of the papers considered. Moreover, the thematic 
analysis has been conducted to identify the main themes, 
findings and gaps described by the selected works, thus 
interpreting the qualitative results obtained (J. Thomas & 
Harden, 2008). In accordance with the objective of the 
present study, selected papers have therefore been analysed 
based on specific criteria. It is noteworthy that, in the 
context of the present work, a task has been defined as a 
sub-component of a maintenance activity. First, the 
maintenance tasks detailed in each paper have been 
highlighted. Furthermore, the maintenance policies under 
which these tasks were recorded have been considered. It 
is indeed possible to observe a higher occurrence of specific 
types of tasks depending on the policy adopted (Keith 
Mobley, 2002). To this concern, the Predictive (Pd), 
Preventive (Pv) and Corrective (Co) maintenance policies 
have been considered, being the most widespread both at 
industrial and academic levels (Molęda et al., 2023). The 
identified tasks have been moreover classified by their 
physical or cognitive nature, being this issue of great 
interest in the context of the present analysis. Additionally, 
the mention of specific I4.0 technologies has been assessed 
to understand their correlation with increased CWL on 
operators (Carvalho et al., 2020). Finally, each maintenance 
task has been categorized according to the taxonomy 
proposed by the European technical reference standard 
EN 13306:2017 (European Committee for Standardization, 
2017). Specifically, tasks have been identified that can be 
considered as Condition Monitoring (CM), Inspection 
(Ins), Routine Maintenance (RM), and Compliance test 
(CT). 

 

3. Results and discussions 

This section details the results obtained from the literature 
search conducted in the context of the present work. As far 
as concerns the composition of the selected sample, it has 
been observed that the papers cover a period from 2014 to 
2022, with a higher frequency in 2017 and 2022 (i.e., 
28.57%). This result confirms the timeliness of the topic. 
Moreover, as for the composition of the sample in terms of 
type of paper and research conducted, it has emerged that 
the majority of the selected works are journal papers (i.e., 
71.42%) and that in 57.14% of the cases, analytical 
evaluations applied to real case studies have been 
considered. In general, however, it can be stated that the 
findings of this work are of practical relevance, as the rest 
of the works considered are case studies and application 
cases. As for the content of the selected papers, their 
tracked characteristics are reported in Table 1. First, (Gatta 
et al., 2022) proposed a Deep Learning approach for 
extracting wind turbine features in order to implement Pd 
maintenance. Indeed, the authors confirm that the advent 
of I4.0 technologies (e.g. IoT) and artificial intelligence has 
increased the interest of both academics and practitioners 
in predictive maintenance practices as a cost-saving 
strategy. The authors, consistent with the main objectives 

of preventive maintenance, have highlighted as a key 
maintenance task the observation and control of variables 
that describe the state of the system. (Aust & Pons, 2022) 
moreover addressed a topical issue, i.e. the evaluation of 
the improvement offered to aircraft maintenance 
inspection operations by different advanced technologies. 
Specifically, the authors considered the inspection activities 
of engine blades and compared the operator's performance 
with those of image processing software, artificial 
intelligence software and 3D scanning. They considered 
three inspection tasks, which have been included in the 
proposed framework: inspection based on sample image 
processing, inspection based on detected image processing 
and inspection based on physical component analysis. 
From the statistical analysis conducted on the data obtained 
from several experiments, the authors found that the 
operator outperforms advanced technologies in screen-
based inspection due to its cognitive abilities, decision-
making capabilities, versatility and adaptability to changing 
conditions, while it performs worse than 3D scanning in 
part-based inspections. (Salonen et al., 2020) instead 
developed a case study to demonstrate the relevance of 
analysing historical data collected in computerised 
maintenance management systems (CMMSs) for improving 
the performance of the company's maintenance system. 
The possession of a high-level basic maintenance system is 
indeed identified by the authors as a fundamental 
requirement for the development of an effective predictive 
maintenance system. In the context of the case study 
analysed, the authors considered different basic 
maintenance activities, including fault repair and machine 
condition monitoring, as shown in Table 1. (Islam et al., 
2017) developed a methodology for assessing human error 
probability in maritime on-board maintenance operations, 
acknowledging its utmost relevance for safety. Specifically, 
the authors considered two maintenance routines for 
proving the proposed methodology, i.e., the maintenance 
of a marine engine exhaust gas turbocharger and the 
maintenance of a condensate pump. For each routine, all 
the tasks to be accomplished were reported, and all of them 
have been included in the present work.  Similarly, 
(Noroozi et al., 2014) employed the Human Error 
Assessment and Reduction Technique, i.e., one of the most 
widespread human error probability estimation techniques, 
to assess the criticality of pre- and post-maintenance 
operations. As part of this work, the authors considered 
two maintenance routines to remove process equipment 
from service and to return components to service (Table 
1). (Shou et al., 2019) developed a methodology to 
distinguish value added from non-value-added turnaround 
maintenance activities in a lean manufacturing perspective. 
To test the developed methodology, they considered the 
turnaround maintenance activities of a gas plant. Finally, 
(Senra et al., 2017) developed a scheduling algorithm to be 
integrated into the CMMSs to assign preventive 
maintenance tasks to available technicians to minimise 
global delays. Within the scope of the present work, 
preventive maintenance activities conducted in a company 
operating in the automotive sector were included, which 
were considered by the authors to test the algorithm 
developed.
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Table 1. Framework of the identified M4.0 tasks (Legend: Pd: Predictive, Pv: Preventive, Co: Corrective, Cg: Cognitive, Ph: 
Physical, CM: Condition Monitoring, Ins: Inspection, RM: Routine Maintenance) 

Ref. Industry Maintenance 
activity 

Task description Mainten
ance 
policy 

Task 
type 

I4.0  EN 
13306:2017 

(Gatta et 
al., 2022) 

Oil & Gas Offshore oil 
wells 
maintenance 

Observation and trend interpretation of controlled 
variables 

Pd Cg Machine 
learning 

CM 

(Aust & 
Pons, 
2022) 

Aircraft  

  

Engine blade 
inspection 

 

Visual inspection based on the interpretation of images 
of individual parts (sample images) 

Pv Cg  Ins 

Visual inspection based on interpretation of images of 
installed parts (images captured within the machine 
through specific instruments) 

Pv Cg  Ins 

Visual inspection directly conducted on the part Pv Ph/Cg  Ins 

(Salonen et 
al., 2020) 

Metalworking Maintenance 
activities on 
driveline 
components for 
heavy 
construction 
vehicles 
manufacturing 
machines 

Repairing faults Co Ph  Rep 

Checking the measured value of system vibrations Pv Cg Sensors CM 

Checking the measured value of system temperature Pv Cg Sensors CM 

Checking the measured value for system compressed air 
leakage 

Pv Cg Sensors CM 

Checking the system component geometry 
measurements 

Pv Cg Sensors CM 

Checking the electrical effects measures of the system Pv Cg Sensors CM 

Checking the thermal characteristics of the system Pv Cg Sensors CM 

(Islam et 
al., 2017) 

Maritime Preventive 
maintenance on 
marine engine 
exhaust gas 
turbocharger 

Air filter cleaning Pv Ph  CM 

Water cooling spaces in the turbine casings cleaning Pv Ph  RM 

Bearings and bearing housings cleaning Pv Ph  RM 

Turbine side cleaning Pv Ph  RM 

Blower side air duct cleaning Pv Ph  RM 

Removing and replacing the bearing units Pv Ph  RM 

Removing and replacing the rotor Pv Ph  RM 

Dismantling the rotor Pv Ph  RM 

Reassembling the rotor Pv Ph  RM 

Removing the nozzle ring Pv Ph  RM 

Nozzle ring replacement Pv Ph  RM 

Sealing bushes replacement Pv Ph  RM 

Gland strips replacement Pv Ph  RM 

Turbine blades replacement Pv Ph  RM 

Anti-corrosion plugs and baffles replacement Pv Ph  RM 

Ball and roller bearings replacement Pv Ph  RM 

Oil pumps with integral lubricating system replacement Pv Ph  RM 

Checking the clearances after an overhaul Pv Ph/Cg  RM 

(Noroozi 
et al., 
2014) 

Oil & Gas Isolating 
condensate 
pump on an 
offshore oil and 
gas facility 

Check lines for fluid and pressure Pv Ph/Cg  RM 

Check bleeds/vents for obstruction Pv Ph  RM 

Close isolation valves Pv Ph  CM 

Lock and tag isolation valves Pv Ph  CM 



XXIX SUMMER SCHOOL “Francesco Turco” – Industrial Systems Engineering  

before 
maintenance 

Depressurize lines Pv Ph  CM 

Drain lines Pv Ph  CM 

Purge lines Pv Ph  CM 

Perform pressure test and isolation leak test Pv Ph/Cg  CT  

Open all drains of affected equipment Pv Ph  CM 

Perform mechanical isolation (fit slip plates, disconnect 
lines, etc.) 

Pv Ph  CM 

Re-pressurize lines Pv Phy  CM 

Isolate, lock and tag motor from control centre Pv Ph  CM 

Test motor for power Pv Ph/Cg  CT  

Revalidate permit Pv Cg  CM 

Break containment Pv Ph  CM 

Testing pressure and isolation at intervals Pv Ph/Cg  CT  

(Noroozi 
et al., 
2014) 

Oil & Gas Reconnecting 
condensate 
pump on an 
offshore oil and 
gas facility after 
maintenance 

Check lines and equipment for obstructions Pv Ph  CM 

Remove mechanical isolation/connect lines to pump Pv Ph  CM 

Remove locks and tags from valves, leaving valves closed Pv Ph  CM 

(Shou et 
al., 2019) 

Oil & Gas Major 
turnaround 
maintenance of 
a gas plant 

Turbine hot gas path inspection Pv Ph/Cg  Ins 

Compressor bearing & seal inspection Pv Ph/Cg  Ins 

Compressor major inspection Pv Ph/Cg  Ins 

Valve repairs & replacement Pv Ph  RM 

Vessel inspections Pv Ph/Cg  Ins 

Turbine major inspection Pv Ph/Cg  Ins 

Statutory vessel inspection Pv Ph/Cg  Ins 

Bearing & seal inspection Pv Ph/Cg  Ins 

Valve overhauls, upgrades and replacement Pv Ph  RM 

Line and vessel repairs Pv Ph  Rep 

(Senra et 
al., 2017) 

Automotive Maintenance 
activities on 
automotive 
production lines 

Replacing the Stator and Rotor of the Dispensing Pump Pv Ph  RM 

Cleaning the flow tank Pv Ph  RM 

Check flow quantity Pv Cg  RM 

Replacing Vacuum Pumps Pv Ph  RM 

Replace interface needles Pv Ph  RM 

O-ring replacement Pv Ph  RM 

Cleaning the oven glasses Pv Ph  RM 

As can be observed from Table 1, a total of 65 maintenance 
tasks have been identified through the conducted SLR. The 
first finding concerns the industrial sector to which the 
tasks belong. In particular, it has been observed that the 
majority of the tasks (i.e., 46%) belong to maintenance 
routines carried out in the Oil & Gas sector, followed by 
routines carried out in the maritime sector (i.e., 28%). This 
result is in line with what is generally highlighted in the 
literature. According to (Telford et al., 2011), indeed, Oil & 
Gas infrastructures, both inshore and offshore, are highly 

capital intensive, and any failures could lead to significant 
economic and environmental damage. In this regard, the 
need for an effective and economically efficient 
maintenance system is imperative. Furthermore, this study 
has allowed to understand that Pd maintenance activities 
are not yet widely considered in the literature. In this regard, 
it has emerged that only 1.6% of the identified tasks are 
conducted within the framework of a Pd maintenance 
policy. This data support what has been previously reported 
in the literature, i.e., that to effectively and efficiently 
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implement Pd maintenance activities, it is first necessary to 
possess an organic data collection and monitoring system, 
and that most companies globally are still working to 
implement such systems (Lee et al., 2017). Instead, it has 
emerged that the majority of the identified tasks are carried 
out within the framework of Pv maintenance policies (i.e., 
97% of the total identified tasks, of which 31.8% are CM 
tasks, 47.7% RM tasks, and 15.9% Ins tasks). From the 
observation of this result, it is therefore possible to state 
that it is currently advisable to focus on this type of tasks 
when developing a tool that finds immediate applicability 
in the industrial context. Another relevant finding that has 
been observed in the present study concerns the absolute 
lack of evaluation of the impact that I4.0 technologies have 
on the performance of tasks, in terms of support or 
increase in the level of difficulty, especially from the 
cognitive point of view. The use of machine learning 
algorithms and sensors has been indeed mentioned only in 
the case of two maintenance routines. As regards, instead, 
the nature of the identified maintenance tasks, it has been 
possible to observe that 63% of the tasks are of a physical 
nature, that 20% are of a physical/cognitive nature and that 
only 17% are of a completely cognitive nature. Although 
this result might apparently seem to contrast with what is 
generally stated in the literature, i.e., that in the context of 
I4.0 tasks are becoming mainly cognitive (Zonta et al., 
2020), it is possible to understand how the observed data 
depends because in almost none of the analyzed cases, as 
mentioned above, the impact of I4.0 technologies on the 
performance of maintenance operations has been 
considered. 

4. Conclusions 

The objective of this study was to identify a framework of 
the main M4.0 tasks. A SLR has been indeed conducted to 
achieve this goal. It led to the overall identification of 65 
maintenance tasks, primarily identified in the Oil & Gas 
sector. However, this study has mainly allowed to 
understand how Pv maintenance activities are currently the 
most considered in the literature and how there is a 
systematic lack of evaluation of the impact that I4.0 
technologies have on the improvement or worsening of 
operator performance in carrying out maintenance tasks. 
These results offer significant contributions both from a 
knowledge and a practical point of view. 

First, the proposed framework has allowed for a 
preliminary rationalization of knowledge on the analysed 
topic. If appropriately integrated, it could constitute a 
reference point for the development of models and the 
evaluation of methodologies. The developed framework 
can also constitute a starting point for practitioners, who 
could use it to carry out internal analyses, for example. 

While this study offers different contributions, it also 
presents some limitations. First, a very limited number of 
papers have been selected within the framework of this 
work, and the results obtained have been analysed 
according to a limited number of categories. Finally, it is 
necessary to highlight the lack of the practitioners' point of 
view for the proposed framework to have global relevance 
and be validated. In this regard, future studies could focus 
on integrating the proposed methodology with semi-

structured interviews with a sample of practitioners, mainly 
from the industrial sectors identified as critical. In addition 
to identifying further maintenance tasks, they could offer a 
significant contribution, especially regarding the use of I4.0 
technologies to support maintenance and could offer 
insights regarding the change offered by the use of such 
technologies on operator performance. 
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