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Abstract: Introducing the Industry 4.0 paradigm poses a new challenge to companies that must incorporate new smart 
technologies into their business assets to remain competitive. Digitisation and sustainability are constraints for 
companies' competitiveness. This article proposes the Smart Retrofit Architecture to integrate hardware and software 
parts into non-Industry 4.0 systems and machines from an interoperability perspective. In this way, the Smart Retrofit 
Architecture makes it possible to benefit from all aspects of connectivity and digitisation while respecting sustainability 
constraints: the recovery of old machines, the study of their parameters and the optimisation of working conditions 
allow social, economic and environmental sustainability. The article shows the architecture outline and an application 
case in the company PAMA S.p.A. in the context of the European AIDEAS project. In particular, in the case developed 
for PAMA, the application of the Smart Retrofit Architecture makes it possible to study the energy consumption of 
an old machine through the use of artificial intelligence algorithms.  
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1.  Introduction 

Industry 4.0, characterised by its advanced digital 
technologies in manufacturing, has introduced a new era of 
enhanced efficiency, connectivity, and automation, thereby 
laying the groundwork for subsequent advancements in the 
Industry 5.0 paradigm. In this scenario, the significance of 
Smart Retrofit (SR) has grown substantially in modernising 
and optimising existing industrial infrastructures. SR 
represents a strategic approach to upgrading and 
revitalising outdated industrial machinery and systems by 
integrating advanced hardware, communication 
technologies, and software such as Machine Learning (ML) 
and Artificial Intelligence (AI) algorithms for predictions, 
process optimisation, and real-time monitoring. These 
technologies empower operators to make informed 
decisions and anticipate potential issues before they 
escalate into costly downtime. The security of retrofitted 
systems is paramount, particularly in the context of 
increased connectivity and data exchange inherent in IIoT 
environments. Smart Retrofit Architecture (SRA), 
proposed in this article, incorporates advanced 
communication protocols and cybersecurity measures to 
safeguard against unauthorised access and ensure the 
integrity and confidentiality of industrial data. This 
methodology also allows Small-Medium Enterprises 
(SMEs) to align with stringent regulatory standards 
regarding connectivity, data security, etc. In fact, the 
adoption of SRA holds significant strategic value, especially 
for SMEs, which can leverage their existing assets to 
preserve and enhance their value through improved 
performance, prolonged service life, and integration into 
IIoT-enabled industrial environments. Indeed, in an 
increasingly competitive and complex industrial landscape 
[1], SR provides a flexible, cost-effective pathway for SMEs 

to enhance their competitiveness and adapt to the rapid 
technological advancements characterising Industry 4.0 
and beyond. This article presents the SRA to facilitate the 
realisation of an SR action in the context of the Horizon 
Europe AIDEAS project, whose scope exemplifies the 
application of AI-driven solutions to support and extend 
the entire lifecycle of industrial equipment, promoting 
environmental, social, and economic sustainability, 
resilience, and agility among European manufacturers. The 
modular and scalable nature of SRA is crucial for SMEs 
that can implement SR solutions incrementally and align 
their operations with smart manufacturing principles 
without significant upfront investment, production 
stoppages, or new training for operators (environmental 
and economic sustainability). In addition, the possibility to 
expand the solution step by step, the gradual integration of 
new technologies, the reuse of machines and the help it 
provides in decision-making make SRA a way to facilitate 
the acceptance of technological innovation for non-digital 
natives (social sustainability). Once the SRA is described in 
terms of hardware and software parts, the case study of the 
PAMA factory will be reported. PAMA S.p.A. is a 
company, located in Rovereto, manufacturing boring 
machines, milling machines and machining centres for 
various sectors and is one of the project pilots. The aim of 
applying the SRA in PAMA is to obtain, with low 
investments and small interventions, a greater 
understanding of the energy consumption of a machine 
whose operation depends on the activities carried out by 
other sub-groups of machinery/components/ elements. 
To better explain all these aspects, Section 2 will illustrate a 
short literature review to present the background of the 
SRA; Section 3 will explain the SRA; Section 4 will describe 
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the case study realised in/with PAMA; Section 5 will 
conclude with future developments. 

2. Background 

Entering the 21st century, the manufacturing sector is 
undergoing a transformation marked by the emergence of 
I4.0, a revolution fuelled by advances in information and 
communication technologies. This technological shift has 
necessitated the adoption of SRactions and strategies aimed 
at upgrading existing old machinery to I4.0 standards 
without the need for significant capital investment in new 
equipment. A literature review can help understand what 
important changes have been made, with what 
technologies, for what purposes, and with what benefits. 
The analysis was conducted in Scopus with the key 'smart 
retrofit*', selecting the documents written in English. It 
produced 41 results, many of which have been published in 
the last 8 years (Figure 1).  

 
Figure 1: Documents by year - Scopus "smart retrofit*" 

 
Figure 2: Documents by subject area - Scopus "smart 

retrofit*" 

In particular, it can be seen as a “peak” in 2020 when the 
COVID-19 pandemic forced the development of 
increasingly connected and remotely accessible systems. In 
this perspective, SR actions make it possible to integrate 
connectivity aspects even on machines that were not, 
making them remotely accessible. The areas involving SR 
are various (Figure 2), but for the purposes of this research, 
the focus will be on those involving “Engineering” and 
“Computer Science”. Selecting only these two areas 
reduces the number of documents to 34. A further 
selection was made by excluding those scientific documents 
containing irrelevant keys such as: Buildings, Zero Energy 
Buildings, Housing, Smart Buildings, Ancient Chinese 
Architectures, Architectural Heritage, Building Automation 
Control Strategies, Building Energy Management System 
(BEMS), Building Energy Management, Building Retrofits, 
Buildings Sector, Built Environment, Chemical Process, 
Commerce, Construction, Construction Process, Damping 
Coefficients, Damping, Decarbonising, Energy Renovation 
Of The Building, Building, Building Energy Management 
Systems, Residential Building. The number of remaining 
articles, therefore, fell to 22. This number was then reduced 
by reading the titles, abstracts and conclusions of each: a 
total of 14 articles were considered relevant. The results of 
the literature analysis identify 3 categories of articles that 
focus on fundamental aspects of the development of an SR 
action: the study of the hardware part, the study of the 
software part, and the study of connections and 
communication protocols. Each part is crucial for 
developing an effective SR action (Table 1). From the brief 
review of the literature conducted, it can be deduced that, 
on the hardware side, the main technologies used are those 
that allow data to be acquired and sent from sensors to an 
enterprise database/data management system; for the 
software part, in addition to the numerous proprietary 
algorithms of the specific devices that can be installed, in 
many cases algorithms developed in Python for machine 
learning, AI and deep learning are used. Finally, connection 
and communication are generally achieved with a Wi-Fi 
Internet network using HTTP/MQTT/OPC-UA 
communication protocols. Obviously, it may be necessary 
to install devices such as routers, gateways or similar on the 
hardware side.  

Table 1. Literature review results 

Ref Hardware part Software part Connections & communication  

[2] A sensor node with an inertial measurement 
unit attached to the tap handle and a base 
unit displaying real-time water usage, 
connected to a power source, to monitor 
and analyse the tap handle's movements and 
positioning. 

The software employs sensor fusion algorithms 
to accurately determine the IMU's orientation, 
position, and movement by processing the data 
from the sensors. The complementary filter 
merges the short-term precision of 
accelerometer readings with the gyroscope's 
long-term data to adjust for gyroscope drift. 

Communication between the sensor 
node and the base unit is via 
Bluetooth Low Energy (BLE), while 
the base unit connects to the Internet 
via WiFi.  

[3] A Raspberry Pi 4 Model B with 8 GB RAM, 
a touchscreen display with a 10.1-inch IPS 
panel and 1920x1200 resolution, a built-in 
webcam with 1080p resolution, and a chain 
of LED lights to illuminate the user's face. 

ML and deep learning algorithms, developed in 
Python, transform a user's facial image into 
landmark coordinates and characteristic values 
and then a facial recognition phase matches 
these data with the database entries. 

The communication with the 
industrial PLC is realised via the 
Ethernet/IP protocol and with the 
central enterprise server via the FTP 
protocol.  

[4] ADXL335 accelerometer for capturing 
vibration data during the turning process 
and a Hall effect sensor 3144E for tracking 
the rotation and feed of the plate. An ESP32 

The system leverages the ThingSpeak IoT 
analytical platform for real-time data storage, 
visualisation and analysis in the cloud. This 
enables the formation of a process performance 

The data collected by the sensors are 
transmitted in real time to the 
ThingSpeak cloud platform, which 
supports the transmission and 
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DevKit V1, equipped with an Espressif 
ESP-WROOM-32, serves as the core 
module, supported by a baseboard for 
connecting sensors and gathering data. 

history and the comparison of correlated 
vibration parameters and process settings via a 
dashboard for visualisation and verification of 
correlations between the different parameters 
evaluated. 

analysis of real-time data streams (via 
HTTP/MQTT) 

[5] Raspberry Pi 4 Model B, 8 GB RAM, 
touchscreen 1200 IPS panel, integrated 
webcam with 1080p and 12V LED light 
chains for the user's face illumination. 

Implementation of facial recognition APIs 
using the Python programming language, 
suitable for Machine Learning and Deep 
Learning tasks.  

Not specified 

[6] a Hardware elements include sensors for 
operational data collection, ranging from 
vibration, temperature and humidity sensors 
to more advanced sensors for machine 
status monitoring. In addition, gateway 
devices may be included to facilitate 
communication between the legacy device 
and the data management system or 
network. 

Software plays a key role in processing, 
analysing and transforming collected data into 
valuable information and knowledge. It includes 
applications for data pre-processing, 
visualisation, and detailed analysis, and it can 
operate on cloud, edge, or fog computing 
platforms depending on specific data latency 
and processing capabilities. 

Communication and connection may 
involve the use of different 
communication technologies, such as 
Wi-Fi, Bluetooth, LTE, or industry-
specific standards such as MQTT or 
OPC-UA.  

[7] Raspberry Pi devices for both the Gateway 
and the Local Server. The Raspberry Pi was 
chosen for its low cost and software 
flexibility, meeting the requirements of low 
cost and ease of implementation. 

A custom library in Python is developed to 
handle the XWare metamodel, which 
standardises data from heterogeneous sources 
into a unified format compatible with intelligent 
maintenance applications. 

OM2M facilitates communication 
among devices using different M2M 
protocols, making XWare compatible 
with a wide range of existing 
technologies. 

[8] An electric drill modified with a self-tracking 
camera (Intel® RealSense™ Tracking 
Camera T265), an AR visor (Microsoft 
HoloLens 2) to provide a user interface and 
visualisation of the executive 3D model, and 
a laptop to collect and process data streams 
from both the instrument's sensors and the 
headset. 

Universal Windows Platform (UWP) 
application was deployed on the HoloLens to 
visualise the executive 3D model, and data 
processing software was installed on the laptop 
to assist the operator in correcting the position, 
orientation, and depth of the hole. Cockroach 
software is also used as open-source software. 
NET-based toolkit for manipulating and post-
processing cloud points in CAD environments, 
and Rhino software for processing 3D data. 

The use of HTTP protocols and 
UDP/TCP sockets for 
communication between the AR 
HoloLens 2 visor and the laptop, as 
well as for accessing data stored in the 
cloud during the manufacturing 
phase. 

[9] Includes a 3D-printed enclosure made of 
polylactic acid material, housing an LED 
ring for illumination, a camera module for 
capturing meter images, a Raspberry Pi 
microcontroller for processing, and a power 
bank. Real-time data transmission to 
ThingSpeak is facilitated using an LTE-
based portable WiFi hotspot.  

Development and training of a CNN model, 
specifically the ResNet-18 model, using transfer 
learning from the pre-trained ImageNet dataset. 
The model is trained on a comprehensive 
dataset of digit images extracted from meter 
readings, employing image normalisation, 
resizing, and standard optimisation techniques 
to ensure compatibility and efficient training. 

The article mentions the use of 
ThingSpeak for real-time data 
transmission, implying the utilisation 
of internet to communicate between 
the IoT-enabled water meters and the 
cloud server. The exact protocols are 
not specified. 

[10]a 

 
The hardware aspect described in this article 
includes installing and integrating additional 
sensors into existing production machines. 
These hardware enhancements are crucial 
for enabling legacy systems to acquire new 
functionalities and become part of a 
connected, data-driven manufacturing 
environment. 

Software for data acquisition, processing, and 
analysis, as well as software for machine control 
and monitoring. The software part would be 
essential for interpreting the data collected by 
the newly installed sensors and translating it into 
actionable insights, thereby enabling improved 
machine condition monitoring, asset 
transparency, and failure recognition. 

Not specified 

[11] The article mentions the integration of IoT 
capabilities into existing machinery, even 
those that are outdated. This includes 
interfacing with existing programmable 
logic controllers (PLCs) through external 
hardware capable of connecting with the 
original machinery and collecting and 
exchanging data. This approach enables the 
enhancement of traditional 
electromechanical systems with digital 
capabilities. 

The article discusses the development of an 
online dashboard for data visualisation and 
management, accessible to both operators and 
management. This dashboard is built using the 
Losant platform and displays real-time data 
from PLCs. Another significant software 
component is the burr recognition system, 
which utilises computer vision techniques to 
detect and evaluate excess molten material in 
moulds. 

The article highlights the need to 
implement the connection with PLCs 
through communication protocols, 
which are not detailed. 
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[12] The hardware setup includes integrating a 
Samsung S7 PLC to facilitate connections 
and utilising UDOOx86 boards and 4G 
routers to establish connectivity. This setup 
supports the integration of IP cameras and 
other IoT devices to modernise the 
manufacturing environment without fully 
replacing existing equipment. 

The development of a computer vision 
algorithm for burrs recognition, aimed at 
detecting production defects in real-time, is 
described. Additionally, a custom Python 
application is mentioned for data collection and 
forwarding, and the use of Losant and NodeRed 
platforms for dashboard development and data 
visualisation. This allows for real-time 
monitoring and management of data from 
PLCs, enhancing the decision-making process 
for operators and management. 

The communication setup involves 
connecting the UDOOx86 board to a 
SECO C23 IIoT gateway via Wi-Fi, 
with a 4G connection to the Internet, 
facilitating remote access to data and 
video streams. The PLC data 
communication is facilitated by an 
OPC DA Server on a Windows 
machine, with a Python script using 
the OpenOPC library to read and 
forward data to remote services. 

[13] Microsoft HoloLens overlays digital 
information onto the machine's real-world 
environment, guiding operators through the 
setup process. (The case study also involves 
the use of CAD data of tools and machine 
frames prepared in advance, which are 
essential for the AR system to accurately 
project the digital overlays). 

Applications run on the Microsoft HoloLens 
display CAD models, setup instructions directly 
in the user's field of view, overlaying digital 
content onto the physical machine parts. The 
Static Expert Module (SEM) is an example of 
such software, designed to guide operators 
through machine setup operations up to the 
start of the bending program. 

The integration of HoloLens with 
machine tools implies the use of 
wireless connectivity and possibly 
AR-specific protocols for real-time 
data exchange between the HoloLens 
and the machine control system. 

[14] 

a 
This article identifies several applicable 
hardware elements including advanced 
and/or smart sensors, PLCs, raspberries, 
Arduino, industrial PCs, etc. 

This article identifies several elements that can 
be integrated on the software side, such as data-
driven AI and ML algorithms, whose results can 
be visualised on user interfaces. Modelling 
software and digital twins are also listed. 

OPC UA and MQTT, but 
communication methods that exploit 
Web APIs and cloud services are also 
illustrated. 

[15] The hardware parts that are upgraded or 
integrated into the solution to control 
system with feedback (advanced encoders 
and position sensors), the integration of 
CPS, and the improvement of the machine 
control unit. 

On the software side, the article focuses on 
improving the software that runs the numerical 
control kernel and developing an intuitive and 
efficient human-machine interface that 
simplifies the decision-making process. 

Several strategies can be implemented 
(internet, Bluetooth, etc.) which 
exploit protocols such as Ethernet, 
CAN-bus, EtherCAT, WLAN, UPC-
UA, etc. 

a The paper  is a literature review 

3. The Smart Retrofit Architecture  

From the insights provided by the short literature review, it 
was possible to design an architecture that would simplify 
SR actions but could be generic and modular to be adapted 
to different situations. The literature review articles [13], 
[14], [15] present several steps that should be done before 
applying an SR action. From these articles, it was possible 
to identify common and necessary steps for effective SR 
action, which are:  
1. AS-IS analysis and scope definition: to evaluate the 

state of the machine (presence of sensors, devices, 
acquisition system, etc…) and identify the final goal of 
the SR action. 

2. Definition of the new devices needed according to the 
AS-IS analysis and the final goal: SRA implementation 
and installation. 

3. Preliminary data acquisition to train an ML/AI 
algorithm. 

4. Validation of the algorithm and of the entire SRA. 
Once all these steps have been completed, a smart-
retrofitted machine capable of acquiring data and returning 
useful information about it can be obtained. The SRA, 
which is modular, can be extended and linked to other 
business management systems. It presents a hardware part 
and a software part connected by the communication and 
connection side. The hardware part of the architecture is 
contained in a “box” mounted on the edge of the machine, 
while the software part is mostly inside the industrial PC, 
where the AI algorithms, user interface, connection and 

communication will be implemented. The SRA is designed 
to be easy to realise, install and ready to use. Moreover, by 
following the step-wise methodology proposed in this 
article, it is possible to apply this architecture in a simple 
and smooth manner. Table 2 describes the main elements 
of the hardware architecture. Each element was identified 
by combining the results of the literature review analysis 
(Table 1), common industrial practices and especially those 
provided by PAMA's experience, and by carefully studying 
a type of structure simple to be realised and adaptable to 
different situations. 

Table 2. Smart Retrofit Architecture elements 

Hardware side  

PLC Compact CPU module - max of 12 I/O 
modules 

Digital 
I/O 
module  

Digital 
inputs:+24VDC/3.7 mA;  
Input delay: 5 ms; Digital 
short-circuit proof outputs: 
+24 V DC/0.5 A.  

Instead of 
two modules, 
it is possible 
to use a MIX 
module with 
a lower 
number of 
inputs/ 
outputs, both 
type analogue 
and digital.  

Analog 
I/O 
module  

Analog/potentiometer 
inputs (±10 V DC/16 bits 
or 0-100 %/16 bits); 
Analog outputs: ±10V 
DC/12 bits; output:+10 V 
DC/5-8.3 mA.  

Industrial 
PC  

EC900 no LTE, Linux; RAM 4GB, 
FLASH 16 GB 

P. supply Power supply 120W, 24V, 5A (DIN RAIL) 
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Display  Touch-screen/monitor (according to 
configuration) 

Connection and communication side  

RS485 RS485 No external +24 V DC supply 
required 

Router Router Wi-Fi 
Wi-Fi  USB Wi-Fi antenna (or mini USB antenna 

WiFi) 

Software side  

Algorithm  AI, Machine Learning, Deep Learning … 
UI Intuitive User Interface (UI)  

When the architecture is applied on a specific machine, 
additional (with respect to Table 2) hardware devices, such 
as sensors, must be evaluated following an AS-IS analysis 
of the machine. In fact, the old machine can already have 
some sensors, but depending on the purpose, they can be 
connected directly to the PLC I/O modules or integrated 
with new sensors that collect other information. If the old 
machine does not have any sensors at all, the necessary 
ones can always be installed. Once the sensors are placed 
on the machine and connected to the PLC's I/O modules, 
the architecture can start working by collecting data from 
the sensors themselves and sending it via Wi-Fi or wired 
internet to the industrial PC where the trained AI algorithm 
or other algorithms, which can process it (Figure 3). The 
results will be visible via an intuitive UI from the display/ 
monitor and then be saved (eventually) in a cloud 
system/cloud database or enterprise database system. The 
communication protocol proposed in this paper for the 
communication between the box and the industrial PC is 
the MQTT (Message Queue Telemetry Transport) as it is a 
lightweight messaging protocol that is designed to be easy 
to implement and simple to use, making it particularly 
suitable for IoT, Machine-to-Machine (M2M) 
communication, and other situations where low bandwidth 
and minimal impact on the device is required. This protocol 
also allows near real-time communication to be developed 
quickly and easily.  

 
Figure 3. Smart Retrofit architecture 

4. Smart Retrofit Architecture: A Case Study  

This architecture is generic, adaptable in different situations 
and for different dated machines, expandable and modular. 
Being composed of simple devices, it is also cheap and easy 
to integrate. An example that can be given concerning the 
application of this architecture in an industrial context is 
the one being developed at the PAMA company in the 
context of the AIDEAS project. The company PAMA 
provided a machine, which has been working in the 
manufacturing department since 2008, on which, following 
an AS-IS evaluation, it was possible to proceed following 
the steps below. 

 

4.1 AS-IS analysis and scope definition 

PAMA's objective with the SRA application is to monitor 
the normal energy consumption of a subset of components 
essential for the machine's operation. By using predictions 
from the AI algorithms about the expected energy 
consumption under various conditions, the system can 
detect when the machine's energy usage deviates from the 
norm, indicating a non-standard condition. Once the target 
has been set and the initial condition analysed, it is 
determined that the machine is equipped with sensors to 
acquire information. These sensors provide data on the 
energy consumption of specific elements (e.g., pumps, 
drives, coolers) and information about the status of each 
element, such as 'ES' (on/off) as shown in Table 3.. 
Additionally, the sensors capture data on commands 
(whether a command has been given), SC, and the rotation 
speed, RS, in the case of rotating elements. 

4.2 Definition and installation of the new devices 

Since the sensors are already present on the machine, it was 
decided to complete the construction of the SR hardware 
side with a PLC, its I/O modules and a Wi-Fi antenna to 
enable data sharing with an industrial PC located close to 
the machine but not on its edge. There is also a router for 
the Wi-Fi internet network in an intermediate position 
between the machine and the industrial PC. Sensors on the 
machine acquire status, control and speed information. 
These sensors are then divided into groups to which a TA 
energy meter is assigned ( configuration in the upper part 
of  Table 3) and which return information to the PLC on 
the energy spent by the specific subset during the 
operations. 

4.3 Data acquisition and AI algorithm 

The data is collected by the sensors that send it via Wi-Fi 
and MQTT protocol to the industrial PC. The industrial PC 
receives them and, on the one hand, temporarily saves them 
locally and, on the other hand, sends them to the pre-
processing algorithm, which re-processes and sends them 
to the AI algorithms. The acquired data can be divided into 
2 categories: energy values (acquired by the TA energy 
meters, referred to as 'P_VAL_') representing the energy 
consumption of a subset of elements, and the 
state/command/rotation values of these elements 
(acquired by the other sensors, referred to as 'ID_'). The 
command and status signals only take on the values 0 and 
1, while the rotation values depend on the size of the 
rotating element and the process to be performed. Since the 
sensors only acquire and send information when they 
register a change or when a certain amount of time has 
elapsed, the data is returned in a JSON format that 
contains, among other information, the name of the 
changed variable and its value. In order to reconstruct a 
suitable dataset to be used in the training of the AI 
algorithm, a preprocessing algorithm was implemented that 
reads the information sent from the sensors to the 
industrial PC via MQTT, analyses the structure of the 
JSON and inserts the new value of a specific parameter into 
the variable table. This algorithm makes it possible to 
acquire the dataset as a table in which no cell is left empty: 
the new/changed data is inserted in the last available row, 
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on which also the values of the other parameters (that have 
remained constant) are reported.  

 
Figure 4. Pre-processing algorithm: conversion from JSON 

to table datasets 

The “reconstruction” of the dataset is shown in Figure 4. 
When the AI algorithms are trained, this preprocessing 
algorithm will allow to send the data to the model correctly: 
the AI algorithm will receive only the last line from the 
dataset and will predict the desired value. Once the entire 
dataset had been reconstructed, several preprocessing 
analyses were conducted to determine whether there were 
correlations between the various parameters in order to 
properly select the most appropriate AI algorithms. In 
particular, descriptive statistics and calculation of Pearson's 
correlation matrix coupled with the Student's T-test were 
used. Since these first analyses did not reveal any strong 
correlations between the 'P_VAL' variables and the 
variables of the relevant subgroups , it was evaluated the 
possibility of investigating other possible correlations 
between the energy consumption ('P_VAL') variables and 
all the other variables making up the dataset. In order to 
make the study of these variables easier, it was used the 
RapidMiner, which loads the data and verifies the integrity 
of the dataset, normalises and standardises the dataset, 
performs a Principal Component Analysis (PCA) and 
returns to us the list of variables with the highest 
correlation. In addition, RapidMiner simultaneously tests 
five different types of AI algorithms, returning which ones 
might be most suitable for the provided dataset. Obviously, 
these algorithms are tested on a limited number of 
conditions and therefore, although a beneficial tool and an 
excellent starting point, it is not the final solution. For this 
reason, the variables with greater correlation and stability 
(according to the analysis obtained by RapidMiner) were 
selected for the prediction of each variable of energy 

consumption. Then using these variables as input, 6 
different AI algorithms present in RapidMiner were tested: 
Generalised Linear Model (GLM),  Deep Learning (DL), 
Decision Tree (DT), Random Forest (RF), Gradient 
Boosted Trees (GBT), Support Vector Machine (SVM).  In 
Table 3, the percentage of error committed by each 
RapidMiner algorithm is shown: RapidMiner estimates that 
each algorithm will predict the variable of interest, given the 
selected inputs, with a certain error. Of course, as was 
pointed out earlier, this is a starting point that must be 
optimised by developing specific hyperparametrization and 
optimised AI algorithms. It was decided that for this 
preliminary case, only one type of algorithm, the Decision 
Tree, should be developed to predict the values of the 
energy consumption variables as it returns acceptable error 
values for all the cases. The code for the implementation of 
the Decision Tree algorithms was realised in Python, and 
each includes a section for loading the data and breaking 
them down into independent variables X (parameters 
selected via RapidMiner, shown in the Table 3) and 
dependent variable y corresponding to the energy 
consumption variable (‘P_VAL’ variables). Subsequently, 
the data are divided into train and test data using the 
train_test_split method (sklearn.model_selection library) in 
which 80% of the data are assigned to the train-phase and 
20% to the test-phase. Then, the models are realised with 
several DecisionTreeRegressor functions of the sklearn.tree 
library. These algorithms are trained on the train data and 
tested on the test data with the 'predict' method and the 
calculation of the root mean square error and R2 
coefficient. To optimise the models, hyper-
parameterisations conducted with GridSearchCV are also 
launched, testing the criterion, max_depth, min_samples_leaf 
and max_leaf_nodes. These hyper-parameterisations showed 
that the best parameters are those present by default in the 
DecisionTreeRegressor function. 

4.4 Validation of the AI algorithms and SRA 

The Smart Retrofit Architecture applied to the PAMA case 
led to the realisation of a hardware part connected to the 
machine, while on the software side, an AI algorithm was  

Table 3. Variable subdivision – “Wired” configuration vs RapidMiner correlations 

TA energy meter 

Wired division of sensors 

ID_ 

SC ES RS 

P_VAL_1 75 76  
P_VAL_2 57,58,59,77,60,78,87,79,80,81   
P_VAL_3 67,68,69,73,74 66,70,71,72  
P_VAL_5 84,85,86  55, 56 
P_VAL_6   11,14,17, 31,35,37, 39,41 
P_VAL_7   21,28, 63 

RapidMiner 

Value 
Prediction 

Input suggested by RapidMiner RapidMiner Algorithms Errors [%] DT algorithms 

P_VAL_ ID_ GLM DL DT RF GBT SVM 
Score 

R2 
RMSE 

P_VAL_1 11,14,17,31,39,41,55,56,60,64,67,73,84 2,3,4,5,6,7 37.1 23.6 24.5 23.2 17.9 16.4 81.6% 1.62 
P_VAL_2 17,39,41,60,67,73,31,64,55,56,84,11,14 1,3,4,5,6,7 17.2 10.7 5.8 13.9 4.7 4.7 89.3% 0.57 
P_VAL_3 73,39,14,11,60,67,55,56,84,17,41,31,64 1,2,4,5,6,7 19.5 8.1 5.1 15.5 3.8 3. 7 93.8% 0.72 
P_VAL_5 64,60, 67,73,55,56,84, 11,17,41,31,14 1,2,3,4,6, 7 48.9 13.2 3.3 27.7 5.1 3.4 78.8% 1.1 
P_VAL_6 60,11,14,17,39,67,73,55,84,56,41,31,64 1,2,3,4,5,7 7.6 3.0 1.2 5.0 1.8 2.2 82% 1.2 
P_VAL_7 17,56,73,31,60, 67, 55,11,14, 41,84,64 1,2,3,4,5,6 7.6 3.3 3.4 5.2 1.8 2.1 77.5% 0.80 
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developed to reproduce the machine's behaviour and 
predict and simulate energy consumption. The SRA 
application on PAMA has currently been validated in an 
“experimental environment”; it remains to be evaluated 
with online tests.  

5. Discussion and conclusions  

The Smart Retrofit architecture simplifies SR by indicating 
which and how elements can be combined to develop a 
generic but effective solution applicable to different 
machines and in different contexts. Unlike the cases 
developed previously and in the literature, this article wants 
to propose a clear and simple architecture and 
methodology that, if followed in its steps, allows the 
integration of an old machine in an industry 4.0 context 
without the need for new certifications. According to the 
proposed architecture, it is necessary to develop a hardware 
part containing several devices capable of enabling the 
software and communication/connection side of the 
machine. On the software side, the greatest difficulty was 
to identify and develop artificial intelligence algorithms 
capable of replicating the behaviour of the machine on 
which it is installed in order to obtain value-added data: in 
the application case reported, the aim was to best predict 
the power values consumed by a group of machine 
elements. This article also reports on an application of the 
architecture, the case study applied at the company PAMA, 
where the main purpose was to study and monitor the 
power consumption of certain groups of machine 
components. For the development of the algorithm, the 
dataset was studied and then the appropriate algorithm was 
found to predict and evaluate the energy consumption 
parameters ('P_VAL').  The data analysis showed that there 
is a strong correlation with the elements of other 
subgroups, a finding that did not surprise us as all elements 
are interconnected and cooperate during a specific process. 
For this reason, it was decided to develop an algorithm that 
would take information from elements of other groups as 
input. Although this represents a first approach and the 
algorithms can be further improved, the first results 
obtained can still be considered good and constitute a 
starting point for future updates. In fact, as future 
developments and next steps, the aim is to improve the 
algorithms by testing different types (e.g. those 
recommended by RapidMiner or others) capable of 
predicting these values more accurately. Among the 
limitations of this solution are the fact that the machines on 
which the architecture is implemented do not obtain the 
"Industry 4.0" certification but can only be made more 
collaborative in a connected context/company and that the 
application of architecture does not change the mechanics 
of the machine but tries to make improvement by working 
on the reworking and study of the information obtained 
from the machine itself. 
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