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Abstract: Manufacturers, particularly machine tool builders, are increasingly adopting servitization, transitioning from 

selling products to offering integrated product-service systems (PSS). Machine tool companies aim to create value-
added processes by providing predictive maintenance services and ensuring machine users can minimize downtime 

through up-to-date machines. However, the health condition of machines is significantly influenced by process 
parameters and operating conditions, often overlooked during machine operation. This results in the accumulation of 

unlabeled condition monitoring data, posing challenges in constructing predictive models for health assessment and 
prediction. Although some of this data resides in Programmable Logic Controllers (PLC), obtaining information 

directly from users is challenging due to privacy concerns, as users perceive PLC data as sensitive and are hesitant to 
share it with manufacturers. Consequently, there is a need to develop a data collection platform capable of remotely 

gathering both condition monitoring and sensitive data. This study addresses the integration of process parameters 
and condition monitoring data to facilitate predictive maintenance servitization in the machine tool industry.  To this 

aim, sequence classification, sequence-to-sequence classification and sequence regression approaches based on 
Convolutional Neural Network and Long Short-Term Memory are adopted. These lightweight algorithms efficiently 

predict the machining processes, the tool, and the depth of cut, automatically storing contextual information for each 
manufacturing process sequence. This model contributes to creating a comprehensive database that producers can 

utilize to develop maintenance plans for users. The proposed approach is validated through a case study involving a 
five-axes CNC machine, underscoring the importance of automatically collecting contextual information for real-time 

monitoring and enhancing PHM techniques. The findings contribute to the realization of predictive health monitoring 

methods, fostering large-scale interoperability and servitization in maintenance practices.  
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1.Introduction 

Predictive Maintenance represents a great opportunity for 

manufacturing companies to improve productivity and 
profitability. The possibility to continuously monitor 

physical assets and predict their failures is particularly 
beneficial in the machine tool industry. In this context, the 

Industrial Internet of Things (IIoT), Edge and Cloud 
computing, and Deep Learning would enable smart 

machining processes that adjust process parameters in real-
time to optimize performance and improve product quality 

(Zonta et al., 2020). In addition, those technologies would 
allow machine producers to offer integrated solutions to 

clients and reduce investment risks (Greenough and 
Grubic, 2011). In other words, a maintenance servitization 

business model could be adopted to collect the data from 
machines spread worldwide and develop intelligent models 

for achieving high quality and availability performance (Lin 
et al., 2019). The reference framework for adopting a 

predictive maintenance strategy is the so-called Prognostics 
and Health Management (PHM), which provides all 

necessary steps to predict the  Remaining Useful Life 
(RUL) of components and systems from the collection of 

sensor signals from machineries. However, implementing 
the PHM framework in industrial environments is 

challenging and the need to adapt scientific research to 
practical use is emerging (Lei et al., 2020). Indeed, while 

extensive studies exist on categorizing machine faults and 
predicting the RUL of components, industrial settings 

present unique challenges such as a lack of labeled data and 
historical failure information (Calabrese et al., 2022), 

especially from the perspective of the machine producer.  

Indeed, machine producers should collect massive data 

from both sensors installed on the machine and the PLCs. 
Sensors provide Condition Monitoring (CM) data from 

which relevant information on tools’ wear can be extracted. 
The PLC provides process parameters which allow to 

understand the operating condition of the machine. Both 
types of data should be integrated in a unique dataset, 

which requires a time-consuming data pre-processing 
(Calabrese et al., 2019). However, clients are unwilling to 
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share sensitive data, like the parts geometry and materials, 

the manufacturing process steps, and the process 
parameters. In other words, CM data are not associated 

with any operating condition, resulting in unlabelled 

datasets.  

In the literature, the lack of the information of operating 
condition has been faced mainly through two approaches, 

i.e., unsupervised learning algorithms (Del Buono et al., 
2022) and transfer learning (Cheng et al., 2022).  In the first 

case, unsupervised models are used to group the data in 
several clusters, one for each operating condition. Then, a 

RUL prediction model is trained for each cluster. On the 
contrary, transfer learning aims to build a unique prediction 

model that could work in all operating conditions. Despite 
the high accuracy achievable by these models, they require 

a lot of training data in all possible conditions.   

An alternative and appealing solution for obtaining labeled 

data and improving PHM performance may involve 
automatic data collection during manufacturing processes 

(Qiu et al., 2023). Building upon the authors' prior work 
(Calabrese et al., 2023), this paper presents a novel 

framework for automatically gathering contextual 
information determining the operating conditions 

alongside CM data, ensuring that the data shared by the 
client remain anonymous. Specifically, CM data collected 

via sensors can be leveraged to predict the operating 
condition using supervised learning models directly at the 

edge. Consequently, clients can anonymize the data and 
transmit a comprehensive dataset to the machine producer. 

This framework offers the following benefits:  

• Data pre-processing and manual labelling are 

eliminated 

• Contextual information can be used alongside CM 

data as input for RUL prediction models, enhancing 

their prediction accuracy 

• The tool's history can be reconstructed effortlessly, 

facilitating its behavior monitoring, modeling, and 

prediction 

Within this framework, the present paper proposes a 
methodology to obtain a complete dataset, including CM 

data and contextual information. In particular, the 
methodology aims to collect information usually recorded 

in the PLC, e.g., the specific machining process being 
executed, the corresponding tool, and the depth of cut, by 

applying three different Deep Learning models to CM data. 
Specifically, a sequence classification approach and a 

sequence-to-sequence classification approach based on 
One-Dimensional Convolutional Neural Networks (1D-

CNNs) are employed to determine the machining process 
and tool; a sequence regression approach based on Long 

Short-Term Memory (LSTM) is utilized to determine the 
depth of cut. Overall, this lightweight algorithm is suitable 

for both training and real-time inference at the edge of 
machinery, facilitating data collection and monitoring 

alongside Condition Monitoring data.  

The remaining of the paper is organized as follows. Section 

2 describes the methodology and methods used to predict 
In Section 3, the proposed methodology is applied to a 

dataset collected from a 5-axes CNC machines including 

two different parts. In addition, a comparison between 
sequence classification and sequence-to-sequence 

approaches is made on data to validate the proposed 
methodology. Finally, section 4 summarizes the paper, 

highlighting the main results of the methodology, its 
potential applications as well as its limitations and future 

directions of the research.  

2.Materials and methods 

Classification and regression problems can be feature 
vector-based, sequence-based, or sequence-to-sequence-

based. The feature vector-based learning approach assigns 
a class label to each point of the feature vector (Calabrese 

et al., 2018). In contrast, in sequence 
classification/regression or sequence-to-sequence 

classification, the entire sequence is available to a classifier 
before classification (Xing, Pei and Keogh, 2010). The 

sequence classification problem is particularly suitable for 
time series data, in which correlations exist between space 

(variables) and time (variable values at different time steps). 
In addition, while the sequence classification approach 

assigns a single class to all points in the same sequence, thus 
generating a single label, the sequence-to-sequence 

approach assigns a class to all points in a sequence.  

Shallow machine learning models, such as Decision Trees 

(DT) or Support Vector Machines (SVM), can only accept 
input data in the form of a feature vector. For this reason, 

this study utilizes a deep architecture to learn the 
relationships between collected signals and the 

manufacturing process. Time series data is typically 
classified using Recurrent Neural Networks (RNNs), such 

as LSTM, which can capture long-term input information. 
However, they may struggle to extract features from high-

dimensional data and exhibit low generalization 
performance. Conversely, Convolutional Neural Networks 

(CNNs), while unable to capture dependencies in long-
term data, excel at extracting spatial features from 

sequential data (Xu et al., 2023). 

(Bai, Kolter and Koltun, 2018) demonstrated that a new 

architecture called Temporal Convolutional Network 
(TCN) achieves higher accuracies than traditional LSTM. A 

general Temporal Convolutional Network (TCN) 
architecture comprises multiple residual blocks containing 

two sets of dilated causal convolution layers followed by 
normalization, ReLU activation, and spatial dropout layers. 

The primary component of the TCN is the dilated causal 
convolution layer, which operates across the time steps of 

each sequence, giving the network the ability to learn long-
term relationships. In the 1-D convolutional layer, filters 

move along the input, computing the dot product of the 
weights and the input, and then adding a bias term. Dilated 

convolution expands the input area that the model can 
observe without increasing the number of parameters. The 

spatial dropout layer randomly sets inputs to zero to alter 
the network architecture between iterations and prevent 

overfitting. Finally, the ReLU layer is an activation layer that 
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sets a threshold equal to zero for all negative inputs, 

applying a nonlinear activation function.  

2.1.The proposed methodology 

Since manufacturing processes consist of sequences of 
different operations, interspersed with idle times, and each 

operation is carried out with different tools and 
characterized by different process parameters, sequence or 

sequence-to-sequence approaches are preferred over 
feature-vector-based algorithms. The difference between 

sequence classification and sequence-to-sequence 
classification is illustrated in Figure 1. In sequence 

classification, the training set contains several sequences for 
each class (label). In contrast, in sequence-to-sequence 

classification, the training set contains several sequences, 
each containing sub-sequences belonging to different 

classes. From a learning perspective, the difference lies in 
the consideration of past observations. While sequence 

classification does not consider the order of sequences 
belonging to different classes, the sequence-to-sequence 

approach considers the order in which different classes 

appear in the entire sequence, as they can affect each other.  

The proposed methodology, depicted in Figure 2, aims to 
gather three types of information: the tool used during 

machining, the specific process executed by that tool, and 
the depth of cut of the process. Since the tool and the 

process are categorical data, classification approaches are 
chosen, while regression approaches are used to predict the 

depth of cut, which is a numeric value.   

The methodology composes of three steps. First, the 

sequence classification approach is applied to predict the 
tool. In this scenario, the CM data is grouped into 

sequences based on the tool used at those timestamps. 

Sequence classification is used for this purpose because the 

tool used in a specific process does not depend on the tool 

used in the preceding process.  

In contrast, a sequence-to-sequence classification approach 
is employed to determine the process, as the current 

process may be influenced by previous processes. This 
constitutes the second step of the methodology, utilizing 

both the CM data and the tool predicted in the initial step. 
The input sequences encompass all available manufacturing 

processes and includes different labelled sub-sequences. 

Finally, the third step focuses on gathering information 

related to the depth of cut. For this purpose, an LSTM is 
chosen since the output is numerical. The model takes into 

account both the CM data and the tool and process 
determined in steps 1 and 2. In this case, the CM data are 

organized into sequences based on the tool used at those 

timestamps and the specific machining process performed. 

Ultimately, the methodology yields a comprehensive 
dataset, comprising CM data, machining processes, tools, 

and depth of cut for each observation. 

3.Case Study 

The methodology presented in the previous section has 
been validated through a case study conducted on a 5-axis 

numerical control machine, consisting of 3 linear and 2 
rotational axes, installed within a pilot plant representing a 

small-scale simulation of the so-called future digital factory. 
The machine is equipped with various sensors; therefore, 

in addition to general information such as operational 
status, name, status, and program execution time, machine 

alarms, and name and dimensions of the tool loaded on the 
spindle, it is possible to collect several signals of interest for 

both the spindle and the motion axes. Specifically, 
regarding the spindle, temperature, set and actual rotation 

speed, and load evaluated as a percentage of the maximum 
are recorded. For each of the 5 axes, instead, the following 

are recorded: status (an indicator to distinguish positive and 
negative direction advancements and reached position), set 

and actual position, tracking error, current, set and actual 
power, set and actual feed rate, set and actual torque, and 

motor load. For data acquisition and transfer, the 
machining center is equipped with an OPC/UA (Open 

Platform Communication Unified Architecture) server. 
This server streamlines the exchange of information among 

programmable logic controllers (PLCs), human-machine 
interface (HMI), and other machinery for the purpose of 

interconnectivity. 

The signals and parameters used in this case study, along 

with their sources, are reported in Table 1. As it can be seen, 
the depth of cut of each process has been manually 

collected from the field during machining processes, since 

this information was not available in the PLC.  

Table 1: Available Data 

Group Data Source 

Spindle Temperature [°C * 
100], Speed, [rpm], 

Sensors 

Figure 2 The proposed methodology 

Figure 1 Sequence to sequence classification vs. 

Sequence classification 
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Driveload [% 

current] 

Axes Feed Rate 

[mm/min] – [deg], 
Actual Current [A], 

Actual Power [W] 

Sensors 

Tool Name, dimension  PLC 

Part Program name PLC 

Process Depth of cut Field 

 

In order to test the methodology and demonstrate its 

potential benefits, two different machining processes were 
considered: one to produce an aluminum sensor cover 

(Figure 3a), and another to manufacture a steel cubic 
support (Figure 3b). The sensor covers, starting from an 

aluminum cube, undergo the following sequence of 
machining operations: facing of the top face (roughing and 

finishing), circular internal roughing with a 16 Ø mill, 
circular external roughing with a 16 Ø mill, circular internal 

roughing with a 10 Ø mill, circular external finishing with a 
16 Ø mill, circular internal finishing with a 10 Ø mill, 

roughing of the external side pocket, finishing of the 
external side pocket, drilling for the creation of two holes, 

deburring of sharp edges. For the machining of the top face 
of the cubic support, the following operations are 

performed: facing of the face (roughing and finishing), 
external contour roughing, internal contour finishing, 

drilling with a 4 Ø bit to create six holes, drilling with a 10.3 
Ø bit to create one hole, creation of a rectangular pocket 

with an 8 Ø mill (roughing and finishing). For the 
machining on the bottom face of the cube, the following 

operations are performed: facing of the face (roughing and 
finishing), external contour roughing, drilling with a 10.3 Ø 

bit to create one hole, creation of a rectangular pocket with 
a 10 Ø mill (roughing and finishing), creation of a circular 

pocket with a 10 Ø mill (roughing and finishing), deburring 

of sharp edges. 

Figure 4 shows the trend of the feed rate of axis X during 
the manufacturing process of the sensor cover. As it can be 

seen, As seen in the second graph of Figure 4, the tools 
have been grouped into 4 classes: solid milling cutter, insert 

milling cutter, drilling bit, and center drill, plus one 
additional class labeled "idle," indicating that no tool is in 

use at that moment. Similarly, the machining processes 
have been grouped into 5 classes: roughing, finishing, 

drilling, deburring, and smoothing, plus one class labeled 

"idle," indicating that the machine is idle at that moment. 

Note that smoothing is not depicted in the figure but is 
included among the classes since it's not a machining 

operation in the sensor cover process but only in the cubic 

support process.  

In total, 5 sensor covers and 4 cubic supports were realized. 
Given the wide range of products that a company can 

manufacture, dividing model training by parts would mean 
building a customized methodology that needs to be 

reworked every time the system undergoes a change. 
Instead, in this study, the decision was made to include the 

machining processes of both parts in the same input 
dataset, in order to make the methodology more 

generalizable and flexible. For this reason, in the following 
presentation of the methodology results, no distinction will 

be made between the sensor covers and the cubic supports. 
Instead, the results will be presented in the next subsection 

following the various steps of the methodology, describing 
for each of them the input data and their format, the 

approach followed, and the model performances in terms 
of accuracy or prediction error, both on the training set and 

the test set.  

3.1.Results 

The first step of the methodology involves applying the 
sequence classification approach to the data collected from 

sensors to predict the tool used during each phase of the 
process. The different input sequences were identified by 

grouping observations by tool. Therefore, a total of 96 
sequences were obtained, divided among the different tool 

classes as follows: 44 for no tool (idle), 8 for the insert 
milling cutter, 31 for the solid milling cutter, 7 for the center 

drill, and 6 for the drilling bit. These sequences were 
divided into three sets: training, validation, and test, 

including 80%, 10%, and 10% of sequences, respectively, 
as suggested in the literature. Then, the TCN architecture 

has been trained on the training and the validation set and 

Figure 4 Workpieces geometry 

Figure 3 Feed rate of axis X during the 

manufacturing process of the sensor housing 
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tested on the test set, and its performance are reported in 

Table 2.  

Table 2:  Performance of step 1 

 Training Validation Test 

N seq 76 9 11 

Mean 

Accuracy (%) 

100 100 81.82 

 

In particular, the confusion matrix shown in Figure 5 

displays the prediction accuracy on the test set for each 
tool. As can be observed, all sequences labeled as "idle" and 

those made with the insert milling cutter and the center drill 
were correctly classified. However, only 50% of the 

operations carried out with the solid milling cutter were 
classified correctly. The remaining 50% are incorrectly 

classified as being performed with the insert milling cutter. 
In addition, since the drill bit was not used in any of the test 

sequence, the accuracy of prediction for that tool cannot be 

computed.  

The second step of the methodology involves applying the 
sequence-to-sequence classification approach to the data 

collected from the sensors, along with the information on 
the tool obtained from the previous step, to predict the 

specific machining process. In this case, the input 
sequences correspond to the 9 machining processes carried 

out, with 6 used for training and 3 for testing. Results are 

shown in Table 3.  

Table 3: Performance of step 2 

 Training Test 

N seq 6 3 

Mean Accuracy 100 87.20 

Figure 6 displays the true classes and those predicted by the 
model for the three test sequences. Since the sequence-to-

sequence approach assigns a label to each point in the 
sequence and not a unique label to the sequence, the  

prediction accuracy is computed comparing single 
observation predictions. Specifically, observations labeled 

as "idle" are classified correctly in 97.85% of cases, those 

labeled as "roughing" in 96.26% of cases, "smoothing" in 

0% of cases, "deburring" in 17% of cases, "drilling" in 50% 
of cases, and "finishing" in 46.93% of cases. As can be seen, 

for more frequently executed machining processes, such as 
"idle" and "roughing," a higher accuracy is achieved. 

However, a higher prediction error is observed for the third 
machining sequence, corresponding to the production 

process of the cubic support.  

The third step of the methodology involves applying the 

sequence classification approach to the data collected from 
the sensors, along with the information on the tool and the 

machining process obtained from the previous steps, to 
predict the depth of cut. The different input sequences 

were identified by grouping observations by tool and 
process. In addition, sequences containing less than 10 

points (100 seconds) were excluded. Therefore, a total of 
48 sequences were obtained, divided into three sets as 

described in Table 4.  

Table 4: Performance of step 3 

 Training Validation Test 

N seq 38 4 6 

Mean RMSE 0 2.4 6.4 

 

3.2.Experiments 

To justify the adoption of either the sequence classification 

or sequence-to-sequence classification approach and to 
demonstrate the benefits of applying the present 

methodology, three experiments were conducted to 

address the following questions: 

1. Does the sequence of tool usage play a significant role 
when predicting the tool for each phase of the 

manufacturing process of a part?  

2. Does the tool information contribute to better 

classification of different machining processes? 

3. Does the tool and process information contribute to 

better prediction of the process depth of cut? 

To address question 1, a sequence-to-sequence 

classification approach has been applied to the 9 
manufacturing processes to predict the tools used in each 

Figure 6 Confusion Matrix of Step 1 

Figure 5 Test sequence prediction step 2 
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phase. Figure 7 shows the test sequence predictions against 

the test sequence actual labels. When the machine is idle 
and no tool is used, the 90.12% of points are classified 

correctly; similarly, when the solid end mill is used, the 
accuracy of prediction is equal to 88.77%, and when the 

insert milling cutter is used, the accuracy is equal to 86.67%. 
On the contrary, only 12.90% of observations are correctly 

classified in the case of center dirll, and the 25% in the case 
of drill bit. Comparing these results with the results of step 

1, it can be seen that both the mean accuracy and the 
number of the correct predictions is lower in this case. In 

general, using a sequence classification can increase the 

mean prediction accuracy by almost 20%. 

To address question 2, a sequence to sequence classification 
approach has been applied to the input data to predict the 

machining process without the information on the used 
tool. In this case, the input sequences are identified only 

according to the machining processes, since it is assumed 
that the information on the tool is not available. The mean 

accuracy on the test set is equal to 80.53%, while prediction 
accuracies for specific processes are the following: 

observations labeled as "idle" are classified correctly in 
80.68% of cases, those labeled as "roughing" in 94.77% of 

cases, "smoothing" in 0% of cases, "deburring" in 17.74% 
of cases, "drilling" in 50% of cases, and "finishing" in 

36.73% of cases. Comparing these results with the test 
accuracy of step 2, it can be seen that considering the tool 

can increase the mean prediction accuracy by almost 6%. 

Finally, to address question 3, the sequence regression is 

applied to the CM data without any information on the tool 
and the process. In this case, the sequences for training are 

identified only according to the value of the depth of cut. 
For this reason, the number of sequences is higher (two 

different processes with different tools can have the same 

depth of cut). Results are summarized in Table 9.  

Table 5: Performance of step 3 - Benchmark 

 Training Validation Test 

N seq 44 5 6 

Mean RMSE 0 10.32 13.44 

3.3.Discussion 

In general, the results emerging from the case study are 

promising.  

First, it is evident that for those classes with many 
sequences in the training set, errors on the test set are very 

low, demonstrating the high generalization ability of the 
TCN. Indeed, looking at the first step and considering the 

"idle" class, both in the case of sequence classification and 
in the case of sequence-to-sequence classification, the 

number of correctly classified sequences is 100% in the 
former and over 90% in the latter. Similarly, looking at the 

second step and considering the "idle" and "roughing" 
classes, with the sequence-to-sequence approach, over 96% 

of sequences are correctly classified. 

Secondly, the comparison between the sequence 

classification and sequence-to-sequence classification 
approaches highlights two fundamental aspects related to 

the choice of these approaches, particularly sequence 
classification. Indeed, the approximately 20% reduction in 

prediction accuracy observed in the first experiment 
indicates, on one hand, that the sequence-to-sequence 

approach is not suitable for predicting the tool, as the order 
in which different tools are used is not important for this 

purpose. This result is consistent with the decision to 
consider the production processes of different parts. On 

the other hand, this result justifies the preference for 
sequence classification over feature-based classification, as 

point-by-point classification is not suitable. This finding is 
consistent with the hypothesis that it is the temporal 

relationship between points within the same phase of the 

process that determines the process itself and the tool used. 

Finally, from the second and third experiments, it is evident 
that the prediction accuracy and generalizability of the 

model increase as contextual information is included. 
Specifically, by including information about the tool, the 

prediction accuracy of the manufacturing process increases 
by approximately 6%; by including information about both 

the tool and the manufacturing process, the error in 
predicting the depth of cut decreases by approximately 

200%. 

4.Conclusions 

Predictive Maintenance and its servitization can bring 
significant benefits in terms of productivity and 

profitability. On one hand, continuous machine monitoring 
and the RUL prediction of its components can reduce 

defect rates, wear, and the number of breakdowns, thereby 
increasing quality, productivity, and availability. On the 

other hand, thanks to the support offered by new 
technologies for data collection, exchange, and analysis, 

remote monitoring is enabled, allowing machine 
manufacturers to offer integrated product-service solutions 

and reduce investment risks. This paper fits into this 
scenario by proposing a data-driven methodology for the 

automatic collection of information regarding the 
operational conditions in which machines operate while 

keeping sensitive information that customers are unwilling 
to share confidential. In particular, the case of a CNC 

machine is examined, from which weak signals from 
sensors related to the spindle and tool are collected. The 

Figure 7 Test sequence prediction (step 1) using 

sequence-to-sequence approach  
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objective is to train lightweight models on the machine 

edge to provide the manufacturer with a complete dataset 
that can be anonymized. To this end, three models for 

classification and regression are used, taking sequences of 
points as input rather than feature vectors. The first two 

models, based on a TCN architecture, aim to determine the 
tool used and the specific phase of the machining process. 

The last model, based on an LSTM, predicts the depth of 

cut.  

The application of the methodology to 9 manufacturing 
processes of two different parts and its validation through 

3 different experiments has led three main outcomes. 
Firstly, high generalization ability is demonstrated, 

particularly evident for classes with ample training data, 
showcasing low errors on the test set. Notably, both 

sequence classification and sequence-to-sequence 
classification achieve high accuracy. Secondly, the 

comparison between these approaches underscores the 
importance of sequence classification, as it outperforms 

sequence-to-sequence classification in predicting tools, 
which does not rely on tool order. Moreover, it justifies the 

preference for sequence classification over feature-based 
methods, aligning with the hypothesis that temporal 

relationships within process phases determine tool and 
process. Lastly, including contextual information enhances 

prediction accuracy and model generalizability. 

In conclusion, the main advantage of the proposed 

methodology is the opportunity it provides to machine 
manufacturers to gather structured and comprehensive 

datasets, facilitating the construction of a tool failure 
behavior model and, concurrently, aiding in the prediction 

models of its remaining useful life. 

Given the limitations of the current work, which stem from 

the limited availability of manufacturing processes, future 
research will focus on collecting more data and employing 

multi-label approaches. These approaches enable the 
prediction of multiple classes simultaneously, such as tool 

and manufacturing process, addressing the need for 
comprehensive analysis and prediction in industrial 

settings. 
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