
XXIX SUMMER SCHOOL “Francesco Turco” – Industrial Systems Engineering  

Comparative analysis of Deep Reinforcement Learning 
configurations in Flow Shop for enhanced Maintenance 

Management 

Maria Grazia Marchesano*, Guido Guizzi*, Liberatina 
Carmela Santillo*  

*Università degli Studi di Napoli “Federico II”, Dipartimento di Ingegneria Chimica, dei Materiali e della 
Produzione Industriale, P.le Tecchio, 80, 80125- Napoli- Italy 

(mariagrazia.marchesano@unina.it, g.guizzi@unina.it, santillo@unina.it) 

Abstract: Optimising maintenance scheduling in flow shop settings is a significant problem in achieving the goal of 
efficiency in industrial environments, necessitating novel solutions. This paper presents a complete multi-method 
approach to overcoming the complexities of maintenance management in flow shop production systems, combining 
Deep Reinforcement Learning (DRL) with advanced simulation approaches. We especially look into the effect of 
different configurations on the performance of a DRL-trained model tasked with maintenance decision-making. Our 
methodology comprises developing and comparing two distinct DRL configurations. We conducted rigorous 
simulation-based studies to assess the effectiveness of each DRL configuration in managing maintenance schedules 
under varied production needs and machine failure rates. The comparison research provides findings about the 
trade-offs between short-term efficiency and long-term sustainability in maintenance planning, emphasising 
sophisticated DRL techniques' ability to adaptively balance these goals. Our findings show that a multi-method 
approach combining DRL and simulation can provide a versatile and powerful tool for enhancing maintenance 
procedures in flow shop environments. By demonstrating the benefits and limitations of various DRL setups, the 
research adds vital perspectives to the ongoing development of intelligent production management systems, opening 
the path for more resilient and efficient manufacturing operations. 
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1.Introduction 

Maintenance planning within a production plant is a 
fundamental activity to ensure production efficiency and 
the achievement of quality and safety standards (Geurtsen 
et al., 2023) . In this context, we observe how complex 
and multi-critical the decision-making process is, 
considering all the factors that contribute to defining an 
optimal maintenance plan (Converso et al., 2023; 
Ogunfowora & Najjaran, 2023). Moreover, in the broader 
scope of maintenance, it is essential to address product 
management and end-of-life issues. This includes adopting 
sustainable practices and complying with current 
regulations (Gamberini et al., 2008; Popolo et al., 2022). 

The factors that contribute to the decision complexity of 
the maintenance scheduling problem include balancing 
productivity goals and minimizing system downtime (Paz 
& Leigh, 1994). This issue is particularly critical in flow 
shops, where operations follow a specific production 
flow, and the interruption of one machine affects the 
entire line(Mao et al., 2021).  

Traditionally, heuristic linear programming algorithms and 
genetic algorithms have been used to address this problem 
(Abate et al., 2023; Branda et al., 2021). However, 
traditional methods often have high computational times 
and do not allow for possible re-planning based on what 

happens in the production system (unforeseen 
breakdowns, micro-stops, etc.). To overcome the 
limitations of traditional approaches, the use of Deep 
Reinforcement Learning (DRL) is proposed (Nguyen et 
al., 2022). When tackling problems with DRL, the choice 
of modelling the characteristic elements is crucial: the 
learning agent and the environment. In particular, it is 
essential to accurately characterize how training takes 
place by defining the state space, the action space, and the 
reward function.  

In this paper, we propose a comparative analysis of two 
different configurations of DRL elements for 
maintenance planning in a flow shop. Specifically, we will 
investigate which configuration best balances productivity 
and downtime parameters in a flow shop. To do so with 
combine DRL with simulation using a multi-method 
approach.  

This analysis helps to determine which configurations are 
most appropriate and which characteristics of the system 
under consideration best describe it, guiding the learning 
agent to make the best choices in terms of maintenance 
planning. 

The organization of this paper is as follows: Section 2 
discusses the literature review. Section 3 describes the 
problem statement and the tool used in this research, the 
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Section 4 focuses on the proposed approach and system 
settings and finally, Section 5 covers the experimental 
results and the discussion. The paper concludes with 
Section 6, where there is the summarization of the main 
findings. 

2.Literature review  

The integration of machine learning techniques with 
traditional optimization strategies has significantly 
advanced the field of maintenance scheduling. These 
developments aim to enhance operational efficiency and 
reduce production disruptions. Among the various 
machine learning approaches, deep reinforcement learning 
(DRL) techniques, such as Deep Q-Network (DQN) and 
Proximal Policy Optimization (PPO), have emerged as 
particularly promising. 

Valet et al. (2022) (Valet et al., 2022) demonstrated the use 
of DQN for opportunistic maintenance scheduling, where 
maintenance tasks are planned during low-demand 
periods to minimize downtime. This study effectively 
highlighted DQN's ability to optimize sequential decisions 
in uncertain environments. However, it lacked real-time 
adaptability to unexpected machine breakdowns, an aspect 
our research addresses through dynamic re-planning 
capabilities.  

In the realm of digital twin-enabled manufacturing 
systems, Yan, et al. (2022) (Yan et al., 2022) introduced a 
double-layer Q-learning algorithm for dynamic scheduling. 
While innovative, their approach did not compare their 
approach with other DRL algorithms limiting its 
comparative value. Our study bridges this gap by directly 
comparing DQN and PPO, providing a clearer 
understanding of their relative advantages in maintenance 
scheduling. 

Mao et al. (2022) (J. Y. Mao et al., 2022) explored a hash 
map-based memetic algorithm for scheduling, suggesting 
the potential benefits of integrating DQN to enhance 
decision-making with real-time data. Although the study 
did not implement DRL, it underscored the need for 
dynamic system responses, which our research 
incorporates through direct application of DRL 
techniques. 

Huang et al. (2020) (Huang et al., 2020) proposed a 
preventive maintenance policy using DQN for serial 
production lines, demonstrating DQN’s effectiveness in 
balancing maintenance costs and machine availability. 
While their focus was on serial lines, our research extends 
the application to flow shops, thereby broadening the 
understanding of DRL in different production settings. 

Akl et al. (2022) (Akl et al., 2022) developed a simulation-
optimization approach that, although not utilizing DRL, 
emphasized the integration of strategic planning activities. 
This could benefit from the capabilities of PPO, which we 
explore in our research to enhance decision-making in 
maintenance scheduling. 

Addressing broader challenges in predictive maintenance, 
Nunes et al. (2023) (Nunes et al., 2023) reviewed the 
challenges in predictive maintenance, emphasizing the 

need for precise data and effective machine learning 
models. They highlighted the potential of DRL, 
particularly PPO, in improving predictive maintenance 
strategies. Our study builds on these insights by 
empirically testing PPO's effectiveness in a flow shop 
maintenance context. 

Kosanoglu et al. (2022) (Kosanoglu et al., 2022) presented 
a DRL-assisted simulated annealing algorithm, blending 
the strengths of simulated annealing with DRL’s robust 
optimization capabilities, particularly PPO. However, they 
did not compare this with other DRL algorithms like 
DQN. Our research fills this gap by providing a direct 
comparison between DQN and PPO. 

Nguyen et al. (2022) (Nguyen et al., 2022) utilize a multi-
agent DRL framework that employs PPO to enhance 
decision-making across large-scale systems, illustrating 
PPO’s effectiveness in managing multiple agents and 
complex operational demands, leading to improved 
maintenance decision-making and system reliability. 

Hu et al. (2023) (Hu et al., 2023) explore the integration of 
PPO in their Knowledge Enhanced Reinforcement 
Learning (KERL) approach for optimizing production 
and maintenance scheduling. Their work demonstrates 
PPO’s superior ability to manage multiple constraints and 
uncertainties, yielding higher business rewards and more 
effective failure prevention. 

Ruiz Rodríguez et al. (2022) and Ruiz-Rodríguez et al. 
(2024) (Ruiz Rodríguez et al., 2022; Ruiz-Rodríguez et al., 
2024) also reflect on the use of multi-agent reinforcement 
learning, with a strong indication of employing techniques 
like PPO to coordinate maintenance scheduling under 
uncertainty, achieving significant improvements in 
downtime and failure prevention. 

Lastly, Xu et al. (2024) (Xu et al., 2024)detail a condition-
based maintenance model using a factored Markov 
decision process, where an online reinforcement learning 
algorithm, potentially integrating DQN, efficiently learns 
and optimizes maintenance actions, showcasing the 
method’s ability to adapt to and predict system needs with 
high accuracy. 

This extensive body of research underscores the 
transformative potential of advanced AI techniques such 
as DQN and PPO in refining maintenance strategies 
within manufacturing. However, gaps remain in 
comparative analyses and real-time adaptability. Our study 
addresses these gaps by directly comparing DQN and 
PPO in a flow shop context, emphasizing their practical 
implications for dynamic maintenance scheduling. 

3. Problem Statement 

In modern manufacturing systems, maintenance planning 
is crucial to ensure high productivity and minimal 
downtime. There are two main types of maintenance 
activities: 

• Preventive Maintenance: Scheduled activities 
aimed at preventing equipment failures. 
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• Corrective Maintenance: Reactive activities 
performed after a breakdown has occurred. 

Balancing preventive maintenance with production 
planning is a complex task. The goal is to schedule 
maintenance activities in a way that minimizes disruptions 
to production while preventing unexpected equipment 
failures. This problem becomes more complex when 
considering: 

• The stochastic nature of machine breakdowns. 

• The varying impact of maintenance activities on 
production schedules. 

• The need to balance short-term production goals 
with long-term equipment reliability. 

This complexity can be effectively modelled using 
Reinforcement Learning (RL) techniques, where the 
problem is framed as a Markov Decision Process (MDP). 
In an MDP, the environment is represented by states, 
actions, and rewards, which align well with the decision-
making process in maintenance scheduling. 

3.1 Reinforcement Learning (RL) and Deep 
Reinforcement Learning (DRL) 

In this sub-section, we present the RL and DRL 
methodologies used to address the problem and detail the 
two algorithms compared in this study: DQN and PPO. 

Reinforcement Learning (RL) is a type of machine 
learning where an agent learns to make decisions by 
performing actions within an environment to maximize 
cumulative reward. The agent interacts with the 
environment in discrete time steps, observes the state of 
the environment, selects, and performs actions, receives 
rewards, and updates its knowledge based on these 
interactions (Figure 1). 

Deep Reinforcement Learning (DRL) combines RL with 
deep learning techniques to oversee high-dimensional 
state and action spaces. DRL leverages deep neural 
networks to approximate value functions or policies, 
enabling the agent to make more complex decisions. This 
approach is particularly useful in environments where the 
state space is too large for traditional RL methods.  

 

Figure 1 Reinforcement Learning scheme. 

In this paper, we aim to compare the two most widely 
used algorithms in the field of DRL: Deep Q-Network 
and Proximal Policy Optimization. We will examine how 
these algorithms are characterised and how they apply to 
the case study presented in this article. Through this 
comparison, we seek to highlight the situations in which 
one algorithm outperforms the other in terms of 
minimising downtime and maximising throughput. 

3.2 Deep Q-Network (DQN) 

Deep Q-Network (DQN) is a reinforcement learning 
algorithm that integrates Q-learning with deep neural 
networks to manage high-dimensional state space. 
Developed by Mnih et al., 2015, DQN uses a neural 
network to approximate the Q-value function. The Q-
value function quantifies the quality of a state-action pair, 
providing an estimate of the total reward that can be 
obtained by starting at a given state, taking a particular 
action, and following a certain policy thereafter. 

DQN employs a deep neural network to learn the 
representation of the state, providing a more generalizable 
approach to Q-learning.  

To break the correlation between consecutive samples and 
to use the learning data more efficiently, DQN utilizes an 
experience replay mechanism. Actions and states are 
stored in a replay buffer and sampled randomly to train 
the network. 

To stabilize the learning process, DQN uses a separate 
target network with the same architecture as the primary 
network but with frozen parameters. These parameters are 
updated less frequently to prevent the moving target 
problem, where updates lead to significant changes in 
policy. 

During training, the agent interacts with the environment, 

and the transition tuples (𝑠,𝑎,𝑟,𝑠′) are stored in the replay 
buffer. The network is trained by minimizing the loss 
between predicted Q-values and the target Q-values, 
which are computed using the reward and the maximum 
predicted Q-value of the next state, discounted by a factor 
γ (gamma). 

3.3 Proximal Policy Optimization (PPO) 

Proximal Policy Optimization (PPO) is another influential 
algorithm in the field of reinforcement learning, 
developed for solving problems with large and continuous 
action spaces (Schulman et al., 2017). It belongs to the 
family of policy gradient methods where the objective is 
to directly optimize the policy function. PPO aims to 
address the key challenges of policy gradient methods, 
such as sample inefficiency and high sensitivity to 
hyperparameters, by employing a novel objective function 
that facilitates stable and efficient learning. 

PPO introduces a clipping mechanism in the objective 
function to prevent excessively large policy updates. This 
is achieved by modifying the typical policy gradient 
objective to include a term that minimizes the deviation 
between new and old policies. 
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Unlike standard policy gradient methods, PPO exploits 
the collected data for several epochs of stochastic gradient 
ascent, enhancing data efficiency. 

Another variant of PPO uses a penalty to regulate the 
updates, ensuring that the new policy is not too far from 
the old. PPO operates in two phases, in the first phase, 
data is collected through interaction with the environment 
using the current policy. In the second phase, the policy is 
updated by optimizing the clipped objective function. 
This process iteratively refines the policy towards optimal 
behaviour. 

3.4 Challenges of Planning Maintenance Activities in 
a Flow Shop 

Planning maintenance activities in a flow shop 
environment presents several unique challenges: 

• High Interdependence of Operations: In a flow 
shop, the production process is sequential, 
meaning a failure in one machine can cause a 
cascade of delays throughout the entire line. This 
interdependence requires maintenance schedules 
to be highly coordinated to minimize overall 
downtime. 

• Balancing Throughput and Maintenance: 
Maintenance activities are essential to prevent 
unexpected breakdowns, but they also take 
machines out of operation, directly impacting 
production throughput. Finding the optimal 
balance between these competing priorities is 
critical. 

• Variable Production Demands: Flow shops often 
face fluctuating production demands, requiring 
dynamic maintenance scheduling that can adapt 
to varying workloads and priorities without 
compromising equipment reliability. 

• Resource Constraints: Maintenance resources, 
including personnel and spare parts, are often 
limited. Effective maintenance planning must 
optimize the use of these resources to ensure 
maximum availability of machinery. 

• Impact on Makespan: The total time required to 
complete a set of jobs, known as makespan, is a 
critical metric in flow shop scheduling. 
Maintenance activities must be scheduled in a 
way that minimizes their impact on the 
makespan, ensuring that production deadlines 
are met and overall efficiency is maintained. 

By addressing these challenges through the application of 
DQN and PPO within our proposed DRL framework, we 
aim to develop a maintenance scheduling system that is 
both efficient and adaptable to the complex dynamics of 
flow shop environments. This approach seeks to minimize 
downtime and makespan, thereby enhancing overall 
productivity and operational resilience. 

 

 

4. Proposed Approach 

Building on the comparative analysis of Deep Q-Network 
and Proximal Policy Optimization, our proposed 
approach integrates DRL with simulation methods to 
create a comprehensive framework for optimizing 
maintenance decisions. These algorithms are chosen for 
their ability to manage high-dimensional state spaces and 
large, continuous action spaces, respectively. By leveraging 
DQN's experience replay mechanism and target network 
stabilization, alongside PPO's novel objective function 
and clipping mechanism, we aim to enhance the 
robustness and efficiency of maintenance scheduling. 
Rigorous simulation-based studies are employed to assess 
the performance of each configuration under varying 
production demands and machine failure rates, providing 
valuable insights into the trade-offs between short-term 
efficiency and long-term sustainability. This multi-method 
approach underscores the potential of DRL techniques to 
dynamically balance maintenance objectives, contributing 
to more resilient and efficient manufacturing operations. 

4.1 System configuration 

The proposed methodology incorporates the use of 
AnyLogic simulation software to model a production line, 
which enables the simulation of line operations, 
corrective, and preventive maintenance events. This setup 
is critical for comparing the efficacy of DQN and PPO 
algorithms in training a reinforcement learning agent. The 
AnyLogic software enables the configuration of key 
parameters necessary for a Reinforcement Learning 
Experiment. Once configured, the model will be exported 
and implemented in Python using the ALPyne library. 

During the simulation, the DQN and PPO algorithms will 
be developed in Python to train an agent on a flow shop 
system aimed at deriving an optimal policy. The AnyLogic 
environment is specifically tailored to address the Flow 
Shop Scheduling Problem (FSSP), enabling 
experimentation with various configurations (i.e. number 
of jobs to be processed, number of machines in the line).  
The hypothesis of the simulation model are the one taken 
from the work Branda et al., 2021, in which the authors 
wish to schedule at the same time production and 
maintenance activities using Meta-Heuristic algorithms.  

The simulation model’s parameters are the following: 

• Number of jobs to be processed: 50. 

• Processing Times: Triangular distribution with a 
minimum of 20, maximum of 100, and mode of 
50. 

• Corrective Maintenance Time: Uniform 
distribution (15,25) minutes. 

• Preventive Maintenance Time: Uniform 
distribution (30,50)  minutes. 

• Weibull scale parameters α = 100 and β = 1.2. 

ALPyne, a Python library, facilitates the interactive 
execution of RL models exported from AnyLogic. Since 
AnyLogic lacks native support for RL algorithms, ALPyne 
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is crucial for running these experiments. Configuration 
within ALPyne includes setting up the observation and 
action spaces and managing the conversion of 
Observation objects and actions based on the data types 
used in the AnyLogic model. Specifically, the observation 
space is modelled as a 5-dimensional continuous space. 
The action space is discrete, representing maintenance 
decisions (0 for no maintenance, 1 for maintenance). The 
reward function is constructed to evaluate the agent's 
performance by balancing the Makespan against the 
frequency of maintenance tasks. This involves optimizing 
individual ratios related to maintenance times and failure 
probabilities, crucial for maximizing product performance 
and minimizing operational downtime. 

The state space S includes key parameters that influence 
the maintenance scheduling decisions: 

• Failure Probabilities: Machine failure 
probabilities. 

• Percentage of Completed Jobs: Jobs completed 
at time t. 

• Corrective Maintenance Ratio: The ratio of the 
mean processing time to the sum of the 
processing time and the corrective maintenance 
time at time t. 

• Preventive Maintenance Ratio: The ratio of the 
sum of the processing time and the time in 
preventive maintenance to the mean processing 
time at time t. 

• Total Maintenance Ratio: The ratio of the total 
processing time at time t to the sum of the total 
processing time, corrective time, and preventive 
time at time t. 

The action space A is binary, representing whether to 
perform preventive maintenance (1) or not (0) on each 
machine.  

The goal is to minimize the makespan while limiting the 
number of machine breakdowns. This requires balancing 
preventive maintenance interventions to avoid excessive 
downtime. 

The reward function is defined to calculate the reward for 
the agent based on the observation received from the 

simulation as: Reward = Failure Probabilities ⋅ Corrective 

Maintenance Ratio ⋅ Preventive Maintenance Ratio ⋅ Total 
Maintenance Ratio. 

To maximize performance, the learning agent aims to 
optimize the individual ratios. Maximizing Corrective 
Maintenance Ratio involves minimizing the number of 
failures, while maximizing Preventive Maintenance Ratio 
requires increasing the number of maintenance tasks. This 
is balanced by the optimization of Total Maintenance 
Ratio. The overall reward is influenced by the failure 
probability, guiding the agent towards optimal 
maintenance strategies. 

The environment is stochastic, with processing times and 
maintenance times (both preventive and corrective) being 

stochastic variables. This variability reflects real-world 
uncertainties in the manufacturing process. The 
simulation model, developed using AnyLogic and 
executed through the ALPyne library in Python, 
incorporates these dynamics to create a realistic and 
challenging training environment for the RL agent. The 
parameters and settings allow for comprehensive 
experimentation and evaluation of the DQN and PPO 
algorithms in optimizing maintenance scheduling within a 
flow shop system.  

5.Results and Discussion 

After the development of the two policies (DQN and 
PPO) they were assessed in the simulation environment in 
order to compare the results obtained in terms of 
makespan, maintenance frequency and the number of 
breakdowns. These results were compared to a heuristic 
approach from the literature. The setting of the 
experiment of the latter cited approach (Branda et al., 
2021a problem number "201") was replicated in the 
Anylogic simulation model.  

Table 1 Simulation results 

Model Makespan Maintenance 
frequency 

Number of 
Breakdown 

DQN 3239.0 6.0 3.0 

PPO 3345.0 9.0 5.0 

Heuristic 
(GA) 

2834.0 1.0 11.0 

Both the DQN and PPO models have relatively high 
makespan with the Heuristic model designed to operate 
more quickly, presumably through optimizations or 
shortcuts that reduce operational time. The DQN and 
PPO models likely have differing maintenance frequencies 
due to their handling of risks, with PPO potentially 
requiring more frequent checks or interventions due to its 
higher failure probabilities. The Heuristic model, while 
having a lower frequency of maintenance, pays for this 
with a higher rate of breakdowns. 

Number of Breakdown is a critical metric for operational 
reliability. The DQN model seems to balance efficiency 
and risk well, leading to fewer breakdowns. The PPO 
model, with its deeper exploration strategies, shows a 
moderate number, and the Heuristic model experiences 
the most, as its lower maintenance frequency and faster 
operational tempo might lead to increased wear and tear 
or oversight of potential issues. 

The analysis of the results comparing the two distinct 
reinforcement learning models, specifically DQN and 
PPO, reveals noteworthy distinctions in their operation 
and outputs. The makespan, which is the total time 
required to complete a set of jobs, is noted as 3239.0 time 
units. In comparison, the PPO records a makespan of 
3345.0 time units. This indicates a slightly longer duration 
under the PPO model, suggesting a higher number of 
maintenance task to be chosen. The DQN model appears 
to balance risk and operational time more conservatively, 
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whereas the PPO model, while potentially achieving better 
long-term learning through exploration, might incur 
higher immediate costs in terms of time and risk. 

 

Figure 2 Comparison of the Learning Curves: DQN vs 
PPO 

To effectively compare the two figures showcasing the 
learning curves for PPO and DQN training, we need to 
examine several aspects, including the rapidity of learning, 
the stability of rewards, and the overall performance 
achieved by each algorithm. The learning curve for PPO 
demonstrates a very rapid increase in rewards from the 
outset, quickly escalating from around 4 to just over 8 
within the first 20,000 timesteps. This rapid ascent 
indicates that the PPO algorithm quickly grasps and 
adapts to the environment, optimizing its policy at an 
impressive rate. The DQN training curve shows a similar 
swift increase in reward values, rising from about 4 to 
surpass 8 within the same initial timeframe. 

This parallel suggests that DQN, much like PPO, exhibits 
strong initial learning capabilities, efficiently capturing 
optimal strategies early in the training process. Beyond the 
initial phase, the PPO curve displays a stable reward 
pattern, with values slightly fluctuating around the 8 to 9 
range throughout the remaining training period. This 
stability implies that once PPO attains a high-performance 
level, it consistently maintains this level, with minor 
fluctuations reflecting its ongoing exploration of the 
policy space. The DQN curve also stabilizes after the 
initial learning phase but displays lower values.  

Both algorithms demonstrate good capabilities in terms of 
rapid learning and achieving high rewards. The curves 
validate the effectiveness of employing advanced 
reinforcement learning techniques to optimize complex 
decision-making processes in dynamic environments. 

6.Conclusions  

The present research adopts an innovative strategy to 
tackle the complexities of scheduling maintenance tasks in 
a Flow Shop environment, where traditional scheduling 
tools often fall short. This gap has paved the way to the 
exploration of new methodologies, such as deep 
reinforcement learning (DRL), which offers promising 
solutions for optimizing maintenance planning in 
manufacturing. 

This study specifically examines the performance of two 
DRL algorithms, Deep Q-Network (DQN) and Proximal 

Policy Optimization (PPO), in their ability to efficiently 
schedule maintenance tasks. The findings highlight a 
significant reduction in the number of maintenance 
operations required compared to traditional methods, 
demonstrating the potential and effectiveness of the 
proposed DRL-based approach. 

Future research will focus on a broader experimental plan 
to deepen our understanding of DRL in maintenance 
planning across more complex multi-machine, multi-
product production systems. This will include 
investigating distinct levels of stochasticity within the 
model and integrating considerations for resource 
allocation—such as manpower, equipment, and other 
essential resources—into the maintenance planning 
process. By addressing these resource constraints, the 
study aims to develop a more realistic and applicable 
strategy for maintenance scheduling. 
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