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Abstract: Automated Storage and Retrieval Systems (AS/RS) have garnered significant attention in both industrial and 
academic domains due to their ability of enhancing logistics processes in terms of operational and economic efficiency 
and effectiveness. AS/RS usually requires medium to long-term commitment, and for this reason logistics managers 
are compelled to assess the impact of AS/RS design criteria on their performance. However, testing a real-life AS/RS 
before installing it would be too impractical, and thus this task is typically carried out with computer-based scenario 
simulations or via analytical formulations. These methods provide ex-ante evaluations that should be complemented 
by ex-post validation of their outcomes, an area where more approaches are needed in the logistics literature. In 
response to this gap, this paper proposes a Design-of-experiments (DoE) approach applied to a real-life AS/RS 
installed in a laboratory environment. To this end, the impact of two major design criteria (i.e., AS/RS size and load 
units’ type and weight) on one performance measure (i.e., Cycle Time) are explored. This work engenders both 
managerial and theoretical implications. For the former, this work may provide logistics managers with robust results 
to inform their investment decisions; for the latter, the proposed approach can be used to improve the accuracy of 
both simulation models and mathematical formulations for ex-ante measurement of AS/RS key performance 
indicators. 
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1.Introduction 

The increasing prominence of supply chain challenges, 
such as rising ecommerce and supply disruptions, has 
propelled warehousing automation into the spotlight within 
the practitioner and academic communities (Narsana e 
Kinra 2022; Kumar, Narkhede, e Jain 2021). Automated 
Storage and Retrieval Systems (AS/RS) are in fact widely 
used in various industrial contexts due to their capability of 
enhancing the efficiency of logistics processes (Vorasawad, 
Park, e Kim 2023). Generally, AS/RS are characterized as 
computer-controlled systems that autonomously store and 
retrieve goods from designated storage locations through 
mechanical devices (Hameed, Rashid, e Al Amry 2020).  

Designing an efficient AS/RS is essential for optimizing 
operations and maximizing productivity (Kumar, 
Narkhede, e Jain 2021). Furthermore, AS/RS require 
significant long-term investments, leading logistics 
managers to meticulously evaluate the impact of design 
criteria on the performance levels of AS/RS before their 
implementation. Therefore, ex-ante performance appraisal 
methodologies comprise a massive share of the literature 
on AS/RS (Lagorio et al. 2020). Within these 
methodologies we can cite, for example, computer-based 

simulations (see a recent literature review by Ferrari & 
Mangano (2023)) or analytical formulations (Xu et al. 2016; 
2020; Lehmann e Huß 2021).  

Some authors have argued in this context that more ex-post 
validations of ex-ante methodology are needed, especially 
with regards to AS/RS (Lagorio et al. 2020). This 
consideration is even more striking considering the 
increasing diffusion of these systems in the logistics market 
(Yahoo Finance 2023).  

An ex-post performance assessment methodology widely 
used is the Design-of-Experiments (DoE), a statistical 
methodology that is instrumental in optimizing processes 
by systematically investigating the effects of multiple input 
variables and their interactions (Mason, Gunst, e Hess 
2003). DoE has been extensively applied in the 
manufacturing industry (see literature reviews on the 
application of DoE on product innovation (Arboretti et al. 
2022) or on lithium-ion batteries performance (Román-
Ramírez e Marco 2022)).  This methodology is also applied 
to other industries such as the food industry (Antony et al. 
2024) and the service industry (Antony et al. 2020).  Even 
though, according to Antony et al. (2020), Logistics 
represents almost 20% of DoE studies in the service 
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industry, its applications on AS/RS are only on simulated 
environments rather than real implementations.  

In this context, the validation of simulation models through 
experimental campaigns employing DoE principles is 
paramount in bridging theoretical research with practical 
applications (Ferrari et al. 2024). Addressing this research 
gap, our paper introduces a DoE applied to a real AS/RS 
that operates within a laboratory setting. Herein, we delve 
into the influence of two fundamental AS/RS design 
criteria—AS/RS size and load units' type and weight—on 
a key operational performance metrics, namely Cycle Time. 

The paper is structured as follows. First, a literature review 
on AS/RS design criteria and variables, together with 
selected applications of DoE in AS/RS contexts is 
presented. Then, Section 3 outlines the research approach, 
which is based on a General Full Factorial design. The main 
findings from the data analyses are shown in Section 4, and 
finally Section 5 draws the main implications and 
conclusions of this study. 

2.Literature Review 

2.1 AS/RS design  

Analyzing the existing literature on AS/RS design criteria 
provides valuable insights into the various factors that need 
to be considered during the design process. A well-designed 
warehouse should consider factors such as efficient space 
utilization through storage capacity, proper warehouse flow 
and layout, material handling equipment, and safety 
measures (Kumar, Narkhede, e Jain 2021). Common design 
choices regarding AS/RS typically revolve around decisions 
concerning the handling machine type (HM), number of 
aisle, and rack dimensions. Fandi, Kouloughli, e Ghomri 
(2022) primarily concentrate on identifying the optimal type 
of HM and determining the ideal balance between rack 
length, width, and height that minimizes cycle time. In the 
same vein, Accorsi et al. (2017) and (Borovinšek et al. 2016) 
focus on the AS/RS size. Beyond the AS/RS size in terms 
of length, width, and height of the racks, other design 
criteria might include the number of unit-loads that each 
bin can accommodate (Chen, Li, e Gupta 2015). Hence, 
unit-loads size may also be considered among other 
variables. Other prevalent operational considerations 
include storage strategies and regulations for vehicle dwell 
points (Roodbergen e Vis 2009). Finally, it is important to 
take into account the specific requirements and constraints 
of the enterprise, as well as the internal and external 
environment (Huang 2019).  

2.2 DoE in AS/RS contexts 

In the realm of logistics, the utilization of Design of 
Experiments (DoE) remains relatively restricted despite its 
wide acknowledgment and application within quality 
management domains (Coello e Glistau 2020). The 
approach of DoE allows for the acquisition of essential 
information while minimizing costs and maximizing 
efficiency, aligning with the primary aim of experimental 
statistical design in practice (Coello e Glistau 2020). 

 
1 https://www.odette.org 

Unlike traditional warehouses, AS/RS introduce shuttle-
based storage and retrieval systems, necessitating a deeper 
understanding of their operational dynamic (T. Lerher 
2018). Through the application of DoE principles, 
researchers aim to identify significant factors impacting the 
performance of automated storage and retrieval systems, 
such as the Shuttle-Based Storage and Retrieval System 
(SBS/RS) (Tone Lerher 2017). 

Many studies in this field rely on simulations rather than 
physical applications, with variables including vertical and 
horizontal movement speeds and accelerations. An 
application of DoE, coupled with simulation tools like 
ARENA 14.0, presents a significant opportunity for system 
designers to optimize the performance efficiency of 
SBS/RS (Ekren 2020).  

3.Methodology 

This section elucidates the methodological framework 
employed for the experimental setup, the data collection, 
and the subsequent analysis of data.  

3.1 Experiment design 

DoE encompasses a variety of experimental designs, each 
tailored to address specific research questions with 
efficiency and precision. Among these, the General Full 
Factorial design stands out for its comprehensive nature. 
Incorporating variables at both two and three levels, the 
study aligns with a General Full Factorial design paradigm 
(Montgomery 2017). This approach is distinguished by its 
capacity to evaluate all conceivable combinations of 
variables at the predetermined levels, an attribute that 
substantially augments the thoroughness and robustness of 
the analysis. The General Full Factorial design not only 
facilitates a nuanced understanding of main effects but also 
enables a detailed exploration of interaction effects among 
variables, thereby offering invaluable insights into the 
complex dynamics that govern the process under 
investigation. 

In line with the objective of this work, the response 
measured in the proposed DoE is the warehouse Cycle 
Time. The warehouse design criteria mentioned in the 
Literature section comprise the factors or primary variables, 
as shown in Table 1. The factors pertain to two major areas 
of warehouse design, namely the Unit Load (UL) chosen 
and the size of the AS/RS. Regarding the former criterion, 
two levels were chosen for length and height to comply 
with the ODETTE industry standards1. Furthermore, three 
levels were chosen for the weight loaded inside each UL, 
representing three manual handling scenarios: i) an empty 
UL; ii) a UL with total weight within the maximum 
recommended limits for manual lifting, lowering and 
carrying items in work environment (International 
Organization for Standardization 2021); iii) an average UL. 
Regarding the latter, we have chosen arbitrary values for 
the factor levels, to ensure a moderate degree of movement 
of the handling machine (HM).  
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Table 1: DoE factors and levels 

Factor Description Number of levels 

UL Length 

(ULL)  

Length of the UL. Two levels: 300 

mm and 600 mm. 

UL Height 

(ULH)  

Height of the UL. Two levels: 120 

mm and 220 mm. 

Weight (W) Weight loaded inside 

each UL 

Three levels: 0 kg, 

7.5 kg, 15 kg 

Fill Grade 

(FG)  

Percentage of storage 

positions occupied at 

the start of the 

experiment. 

Three levels: 

40%, 60%, 80%   

Tier (T) Number of tiers in the 

AS/RS. 

Two levels: 5 and 

7.  

Column (C) Number of columns in 

the AS/RS 

Two levels: 6 and 

8.  

In addition to the primary variables of interest, this study 
incorporates covariates, i.e. variables  that cannot be 
directly controlled but can be monitored (Montgomery 
2017). The inclusion of these covariates is crucial for 
accounting for external factors that may influence the 
outcome of the experiment, thereby ensuring a more 
accurate and comprehensive analysis. In this context, in any 
AS/RS the outcome measures are also affected by the 
specific algorithm that dictates the storage positions within 
the rack. Hence, the following covariates were added (Table 
2). 

Table 2: DoE covariates 

Covariate Rationale Values 

Number of 

Deep 

Positions (DP)  

The AS/RS can 

store a UL in 

different positions 

within the rack 

Total number of deep 

positions  

Horizontal 

Movements 

(HT) 

The AS/RS 

decides on which 

column to store 

the UL 

Number of 

horizontal 

movements made by 

the HM during an 

experiment 

Vertical 

Movements 

(VT) 

The AS/RS 

decides on which 

tier to store the UL 

Number of vertical 

movements made by 

the HM during an 

experiment. 

Front 

Movement 

(FT)  

 

The AS/RS 

decides on which 

front to store the 

UL 

Total number of 

front positions 

In this preliminary study, we limit the scope to storage 
process, with the retrieval process to be explored in future 
research. In order to approximate a more realistic 
operational scenario, we decided to store 5 ULs for each 
experiment, rather than only one.  

The sequence of experiments was built to randomize the 
factors pertaining to the warehouse size (i.e., number of 
tiers and columns). The factors that should not be 
randomized due to excessively long experimental setup 
(hard-to-change factors) are FG, W, ULL, ULH. 

3.2 Data collection 

We calculated the cycle time for each experiment as the 
difference between the storage request of the first UL and 
the end of the storage process of the last UL. These data, 
along with the recording of the factors and covariates, were 
retrieved from the Warehouse Controller System (WCS) of 
an AS/RS installed in a university laboratory (Ferrari et al. 
2024; 2022). This AS/RS is a Maxi-Shuttle (MS) aisle-
captive system resembling a mini-load stacker crane, which 
is able to move totes using single, double and multiple 
commands. 

3.3 Data Analyses 

Analysis Of Variance (ANOVA) is employed to analyze the 
data, aiming to ascertain the statistical significance of the 
variables' effects across the observed responses. This 
analytical step is paramount in delineating the complex 
interplay of factors, thereby informing the modeling phase. 

In the exploratory stages of model building, Stepwise 
Regression is employed as an automatic technique to 
identify the optimal subset of predictors. This method, 
supported by several statistical software packages including 
MINITAB®, systematically adds and removes predictors at 
each step based on Alpha-to-Enter and Alpha-to-Remove 
thresholds, which are set at 15% in this study. This alpha 
level, widely recognized in the scientific literature 
(Montgomery et al., 2010), is chosen to ensure the inclusion 
of only those variables that exert a significant impact on the 
responses. Such a structured selection process enhances the 
precision, explanatory power, and relevance of the 
regression models developed for the response variables, 
thereby refining their interpretability and the overall 
effectiveness of the analysis. The adequacy of the obtained 
model is demonstrated by using diagnostic checking tests 
such as the coefficients of determination and the residual 
plots, that are analyzed to verify the basic assumptions to 
perform the ANOVA (Mason et al., 2003). 

The final step of the data analysis comprises a linear 
regression analysis based on stepwise response. This 
analysis is aimed to determine the regression equation and 
identify estimated parameters.  
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4.Findings 

First, some descriptive statistics regarding the output 
variables are reported in Table 3. The results show a relative 
standard deviation of 3.91% for cycle time. 

Table 3 Descriptive Statistics 

Variable Mean StDev Minimum Median Maximum 

CT [s] 100,51 3,91 89,50 101,25 107,25 

In the following sections the main findings from the 
ANOVA and the Stepwise analysis are outlined.   

4.1. Findings from the ANOVA  

The following table presents the results of the ANOVA.  

Table 4 ANOVA for Cycle Time 

Source DF Adj SS Adj MS F-Value p-value 

Model 38 2055.61 54.095 43.71 <0.001 

Covariates 4 662.08 165.520 133.75 <0.001 

FT 1 312.95 312.947 252.88 <0.001 

HT 1 29.11 29.111 23.52 <0.001 

VT 1 21.73 21.733 17.56 <0.001 

DP 1 234.37 234.375 189.39 <0.001 

Linear 8 362.63 45.329 36.63 <0.001 

ULL [mm] 1 239.22 239.217 193.30 <0.001 

ULH [mm] 1 11.57 11.570 9.35 0.003 

W [kg] 2 1.39 0.696 0.56 0.572 

FG 2 9.65 4.825 3.90 0.023 

C 1 1.79 1.786 1.44 0.232 

T 1 2.04 2.042 1.65 0.202 

Error 105 129.94 1.238   

Total 143 2185.55    

      

The regression model was found to be statistically 
significant (F = 43.71, p-value < 0.001), indicating that the 
variables considered in the model collectively explain the 
observed variation in the dependent variable. The 
covariates (FT, HT, VT, DP) demonstrated a significant 
effect on the response (p-value < 0.001), suggesting that 
these factors significantly influence cycle time. Conversely, 
certain first-order factors such as weight (W), number of 

columns (C) and number of tiers (T) did not exhibit a 
statistically significant association with cycle time (p-value 
> 0.05). 

However, some second-order interactions were found to 
be statistically significant (p-value < 0.05), such as ULL * 
C, ULH * FG, and ULH * C. These results suggest that the 
dimensions of the UL along with the number of columns 
(C) influence cycle time, highlighting a significant 
interaction between these factors. 

The lack of significance of weight and number of columns 
in the model may be attributed to the physical structure of 
the warehouse, where limited movements within the 
structure do not significantly affect traversal times.  

The values of S, the standard error of the regression, and 
the goodness-of-fit measures R2 (R-sq), adjusted R2 (R-
sq(adj)), and predicted R2 (R-sq(pred)) are reported in 
Table 5. 

 

Table 5 Model summary 

S R-sq R-sq(adj) R-sq(pred) 

1,11244 94,05% 91,90% 88,85% 

 

The standard error of the regression (S), calculated as 1.11 
s, was calculated to assess the variability of the residuals 
around the fitted regression line. The R2 value indicates 
that the model is able to explain approximately 94.05% of 
the observed variation in the response variable, while the 
R2 predicted value indicates that approximately 88.85% of 
the variation in the dependent variable can be explained by 
the model when applied to new data. 

4.2 Stepwise Analysis 

Building on the findings from the ANOVA, stepwise 
regression was applied to refine the model by reducing the 
number of predictors. Of the six first-order factors, the 
stepwise method reduced the number to three, excluding 
parameters W [kg], C and T due to their lack of significance 
at the 15% significance level. Moreover, in terms of second-
order interactions, only ULH [mm]*FG remained 
significant. Notably, the value of predicted R2 has shown 
improvement, increasing from 88.85% to 90.09%. 

The Pareto Chart indicates that the most significant factor 
is UL dimension, followed by FG*ULH and FG. These 
findings suggest that the model can elucidate a greater 
proportion of variability, thereby furnishing more robust 
outcomes compared to the initial analysis. 

The second-order regression equation is derived from the 
stepwise analysis. The parameters of the regression model 
along with their corresponding standard errors are reported 
in Table 6, and the final regression equation is presented in 
Eq. (1). 
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Table 6 Parameter Estimates of Stepwise regression 
model for Cycle Time 

Parameter Estimate SE Estimate p-value 

β0 4.7287 0.21628 <0.001 

β1 0.0044 0.04259 <0.001 

β2 -0.0044 0.03531 <0.001 

β3 3.1665 0.16583 <0.001 

β4 0.0360 0.00214 <0.001 

β5 0.0915 0.01685 0.001 

β6 44.3215 4.27540 0.068 

β7 -0.1927 0.02436 0.034 

The results suggest that the covariates FT, HT and DP have 
a positive correlation on the Cycle time, contrary to VT, 
which shows a negative correlation, albeit low.  

The results of the Stepwise analysis can be subsumed in 
Equation 1. 

𝐶𝑇[𝑠] = 𝛽0 ⋅ 𝐹𝑇 + 𝛽1 ⋅ 𝐻𝑇 + 𝛽2 ⋅ 𝑉𝑇 + 𝛽3

⋅ 𝐷𝑃 + 𝛽4 ⋅ 𝑈𝐿𝐿 + 𝛽5 ⋅ 𝑈𝐿𝐻

+ 𝛽6 ⋅ 𝐹𝐺 + 𝛽7 ⋅ 𝑈𝐿𝐻 ⋅ 𝐹𝐺 

(1) 

5.Discussions and Conclusions 

The findings of this study shed light on several key factors 
influencing the performance of AS/RS and engenders both 
managerial and theoretical insights.  

5.1 Managerial insights 

On a practical level, our findings offer tangible implications 
for real-world AS/RS implementations. By demonstrating 
how our approach can be applied in a real-case scenario, we 
provide practitioners with actionable insights for 
optimizing system design and operational efficiency. 
Through the adoption of our methodology, organizations 
can make informed decisions during the design, 
implementation, and management phases of AS/RS 
implementation projects. 

As a case in point, our analysis reveals that storage decisions 
made by the machine (HM), as depicted by the covariates 
FT and DP, significantly impact cycle time. This 
underscores the critical importance of incorporating HM 
decision-making processes into the design phase of AS/RS 
implementations. By recognizing the pivotal role of these 
storage decisions, designers can better optimize system 
configurations to minimize cycle times and enhance overall 
efficiency. 

Moreover, our research highlights the often-overlooked 
significance of UL size. While this variable has traditionally 
received less attention in AS/RS design, our findings 

suggest that it can exert a considerable influence on system 
performance. As such, designers should carefully consider 
unit load length alongside other design parameters to 
ensure optimal system operation. 

Interestingly, our analysis also indicates that certain design 
variables such as number of tiers and columns carry less 
weight in determining cycle time.  

5.2 Theoretical insights  

From a theoretical standpoint, our study introduces a novel 
approach to the ex-post assessment of AS/RS 
performance. By identifying and quantifying the impact of 
various design variables on cycle time, we contribute to a 
deeper understanding of system dynamics and provide a 
framework for evaluating system effectiveness post-
implementation. This opens avenues for future research 
aimed at refining AS/RS design methodologies and 
enhancing system performance. For instance, the DoE 
methodology could be adopted to include other key 
performance measures such as energy consumption or 
throughput. 

5.3 Generalizability of results and study limitations  

The main limitation of this study is related to the space 
constraints and characteristics of the system under study. 
In fact, the AS/RS used in this study is installed in a 
laboratory and belongs to a specific configuration among 
the many available in the industry. This limitation hinders 
the generalization of the results concerning the impact of 
number of tiers and columns on the AS/RS performance, 
which could be tested by applying the DoE approach in a 
larger AS/RS. 
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