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Abstract: In this paper, we address the challenges of dynamic pickup and delivery problems (PDPs) within the 
framework of Industry 4.0 by proposing an approach centered around dynamic auctions. This method employs 
auctions to assign tasks efficiently among Automated Guided Vehicles (AGVs), ensuring optimal workload 
distribution and enhanced system performance. The model introduces a detailed exploration of task switching logic, 
allowing for real-time task insertion and adjustment during ongoing auctions. This approach assesses the impact of 
dynamic task reallocation on the AGVs' existing work schedules, aiming to minimize the overall make-span and 
distance travelled while maximizing operational efficiency. Initial findings suggest that this auction-oriented and 
multi-agent simulation method improves system performance, providing a viable solution to the dynamic and 
intricate PDP issues in the rapidly changing environment of Industry 4.0. Our study contributes to the field by 
demonstrating how advanced task management and optimization techniques can lead to smarter, more efficient 
industrial operations. 
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1. Introduction 

In the contemporary production context, there is a 
growing need to respond quickly to changes, operate 
efficiently and accurately, and ensure the flexibility of the 
system. Adopting innovative solutions for material 
handling and dynamic task planning becomes a critical 
strategic lever to meet these new challenges of the 
contemporary market (Pereira et al., 2017). In realizing an 
industrial environment that reflects the Industry 4.0 
vision, material handling operations can be managed and 
optimized using various innovative technologies (De 
Martino et al., 2023). Among these technologies 
autonomous guided vehicles (AGVs) are the most 
popular. These vehicles, as described by Rocha et al. (2010), 
operate autonomously and use V2V (vehicle-to-vehicle) 
and V2I (vehicle-to-infrastructure) communication 
technologies to coordinate and operate safely. This not 
only minimizes errors made during the movement of 
materials but also ensures high levels of performance in 
terms of precision, safety, and speed (Barreto et al., 2017; 
Holubčík et al., 2021). In areas such as the dynamic 
management of AGVs, the traditional problem-solving 
approach might not always be the most effective. Instead 
of continually seeking an optimal solution through 
optimization algorithms every time new challenges or 
changes arise, it is often more practical and responsive to 
adopt strategies that provide "good enough" solutions 
quickly. This concept is reflected in the "satisficing" 
theory of Simon (1955). Similarly, Assunta et al. (2017), 
demonstrate how the integration  between humans and 
Cyber-Physical Systems, human-CPS interactions, can 

affect operational decisions in dynamic environments, 
suggesting that the adaptive responses of human 
operators can significantly enhance system flexibility and 
responsiveness, a crucial aspect in the decentralized 
management of AGV systems. 

In this paper, the focus will be on the efficient 
implementation of AGVs, and on auction theory as a tool 
to decentralize operational decisions. The goal is to 
develop a flexible and scalable AGV fleet management 
model, capable of adapting to dynamic internal logistics 
changes and managing specific pickup and delivery 
requests, each of which has a unique origin and 
destination, improving main KPIs such as throughput, 
makespan, and distributed workload on AGVs, in line 
with current trends in Industry 4.0 (Pfeiffer, 2019; Chen et 
al., 2019).  

The remainder of the paper is set out as follows: Section 2 
presents a comprehensive literature review of the state of 
the art; Section 3 outlines the proposed approach; and 
finally, Section 4 concludes the work. 

 

2.  State Of The Art 

The Pickup and Delivery Problems (PDPs) represent a 
specific category of Vehicle Routing Problems (VRP). In 
this type of problems, a fleet of vehicles is tasked with 
picking up and delivering goods or people to specific 
locations. There are several versions of the problem, 
anyways they can be divided into two main categories 
(Parragh et al., 2008). The first is where pickup and delivery 
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points are "unpaired". In this scenario, goods collected 
from one point can be delivered to any other delivery 
point. The second category is that of "paired" problems. 
In this context, each transportation request has a specific 
origin and destination. This implies a direct route between 
the pickup point and the delivery point, without 
interruptions. In the case of paired pickup and delivery 
locations, no other client can be visited between a pickup 
and its associated delivery location. The PDP is a class of 
complex systems whose complexity is NP Hard, being 
extensions of the Traveling Salesman Problem (TSP).  

Most work on the PDP assumes that a plan is made in 
advance and is then executed. There are several solution 
methods to address static PDPs; these can be classified 
into exact methods, heuristic methods, and metaheuristic 
methods, used to obtain acceptable solutions. Some of 
these methods are described in more detail in Cai et al. 
(2023) and Parragh et al. (2008). PDPs, indeed, are always 
full of dynamics and uncertainty, particularly because 
delays and errors occurred frequently in the process of 
information transmission (Converso et al., 2023). All of 
these can have serious impact on the choice of optimal 
solution of PDPs (Zang et al., 2022). In real life, often, 
there is a need of altering plans and make decisions on the 
spot. This is known as reactive planning. In this sense we 
can distinguish two kind of task assignment:  

• Static Task Assignment: the tasks once 
assigned are completed by the robot to which 
they were originally given.  

•  Dynamic Task Assignment: tasks can be 
reassigned if there's another robot better suited 
for the job, this introduces the problem of task 
switching. 

Task switching refers to the act of exchanging or 
transferring tasks between different agents or vehicles, in 
order to optimize the overall efficiency and cost-
effectiveness of the system. This process involves 
reassigning tasks based on various criteria such as 
distance, time, and resource utilization. The concept of 
task switching is evident in the context of dynamic pickup 
and delivery problems, where the routes need to be 
modified to accommodate disruptions and new customer 
demands. 

Dynamic Pickup and Delivery Problems (DPDPs) have 
gained popularity due to their real-world applications in 
logistics and supply chain management. In this version of 
the problem, pickup and delivery tasks are not known in 
advance but arrive dynamically over time. The objective is 
to handle tasks in real-time to minimize the total distance 
travelled by vehicles. Due to the extreme difficulty of 
synchronously addressing uncertainty and dynamics, the 
dynamic variant of PDP has not received the same 
attention as its static counterpart, and only a few latest 
literatures made preliminary investigation on it (Zang et al., 
2022; Parragh, 2008). 

In a dynamic problem, unlike in a static problem, the time 
horizon might be unlimited. Therefore, a solution to a 
dynamic problem cannot be a static output but rather a 

solution strategy that, using the revealed information, 
outlines actions to be taken over time (Cai et al., 2023). A 
basic and commonly used strategy to solve a dynamic 
pickup and delivery problem is to adapt an algorithm that 
solves the static version of the problem. Two approaches 
can be distinguished: the first involves solving a static 
PDP every time new information is revealed. However, 
this strategy suffers from high computational complexity 
since it requires a complete re-optimization every time 
new information is revealed, potentially taking too long, 
thus being unsuitable for a real-time context. The second 
approach, which is generally used, is as follows: the static 
algorithm is applied only once at the beginning of the time 
horizon to obtain an initial solution with the available 
information. When new information is revealed, the 
current solution is updated with heuristic methods such as 
insertion heuristics, deletion heuristics, and swap moves, 
sometimes coupled with a local search algorithm (Berbeglia 
et al., 2010). As the volume of data to process increases, 
the time required to provide an optimal solution becomes 
prohibitive, rendering these methods incompatible with 
real-time response needs.  

Moving from a static to a dynamic context, one of the 
main issues is finding a balance between the need to 
respond quickly to new requests and the need to maintain 
an optimized routing plan (Mes et al., 2007). Hence, there's 
an imperative to find more effective and efficient methods 
that require the implementation of algorithms and 
techniques capable of handling the arrival of new tasks 
and adapting schedules in real-time. Various approaches, 
such as Ant Colony Optimization algorithm (Geiser, T. et 
al., 2020), multi-agent architecture (Guerram, T., 2017), 
dynamic programming (Liu et al., 2018), (Ferrucci et Al., 
2014), simulation, and agent-based approaches, have been 
proposed to tackle dynamic PDPs. The "Agent-based" 
approach is extensively discussed in the scientific 
literature, in particular Barbati et al. (2012) provides a 
comprehensive overview of the use of autonomous agents 
in solving complex optimization problems. According to 
the definition by Wooldridge et al. (1995), to develop an 
ABM, is needed a complete description of some 
characteristics, in particular: 

The Agent Interaction Paradigm: There are various 
interaction paradigms which can be primarily classified 
into: 

• Cooperative paradigms: agents work together 
to achieve common objectives. 

• Competitive paradigms: each agent is self-
interested, the final solution might be best for 
the individual agent involved but not for the 
group as a whole. 

A possible method to address the coordination of AGVs 
in a dynamic context is the use of auctions, which allows a 
good compromise between the number of tasks 
performed and the time taken to perform them 
(Lagoudakis et al., 2005). In these scenarios, AGVs act as 
bidders or auctioneers, submitting bids based on their 
evaluation of the task. Several types of auctions have been 
studied and developed: first-price auctions, English 
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auctions, Dutch auctions and second-price auctions (or 
Vickrey auctions), which assign the task to the AGV with 
the best offer, but at a price equal to the second-best 
bidder's offer. This approach ensures the truthfulness of 
the bid. Telling the "truth" is a dominant equilibrium 
strategy and, therefore, also a Nash equilibrium, meaning 
no player has an incentive to unilaterally change their 
strategy as they're already achieving the best possible 
outcome, considering the strategies of other players 
(Klemperer, 1999).  

Some market-based algorithms also add a consensus 
phase to the auction process to improve the quality of 
assignments. Consensus, in this sense, is an additional 
transfer of tasks between robots after the tasks are 
assigned by the auction. Thus, there is a constant 
reassignment of tasks during the operation of the AGVs. 
Some demonstrations of the benefits and of the increase 
in the solution quality of task trading are presented in Sung 
et al. (2013) and Fanti et al. (2013). 

It is also crucial to specify that auctions can be divided 
into two main types: centralized and decentralized. 
Centralized auctions are managed by a single centralized 
entity that collect bids from all agents and solves a 
combinatorial problem to optimally assign tasks to agents 
(Dahlquist et al., 2023). This approach provides a 
comprehensive overview of the bidding process and is 
useful for problems with a simpler or static structure. 
However, centralized management can lead to delays and 
inefficiencies in dynamic systems. In contrast, 
decentralized auctions are managed by multiple entities, in 
our case the AGVs, each of which can: make bids, accept 
bids, and determine winners. In this type of auction, 
participants can interact directly with each other, allowing 
the auction to proceed more quickly, speeding up the 
bidding and decision-making process. For this reason, it 
becomes particularly useful in dynamic or real-time 
situations, such as internal logistics (DeRyck et al., 2020). In 
this regard, Meissner et al. (2017) offers a comparison 
between the current centralized and decentralized control 
architectures in production and clarifies that centralized 
and hierarchical architectures aren't compatible with the 
needs of future systems. However, the main disadvantage 
in decentralized control is the increased effort required to 
coordinate all independent entities. When adopting a 
decentralized control architecture in a production process, 
there will always be a trade-off between optimality and 
flexibility.  

The proposed method stands out from the existing 
literature because it combines the use of AGVs, the agent-
based approach in simulation, the adoption of an auction 
mechanism, and the implementation of a cooperative logic 
based on task switching for the dynamic assignment of 
tasks in a AGV fleet management model to propose a 
solution to a dynamic PDPs. 

 

3. Proposed Approach 

Building on the recognized need for high production 
flexibility to adapt to personalized market demands 
promptly and cost-effectively, as explored by Marchesano et 

al. (2022), and for dynamic control strategies evidenced by 
Gebennini et al. (2013), our proposed logic of cooperative 
exchange introduces a novel application of auction-based 
dynamics. By focusing on real-time adjustments, we aim 
to overcome the limitations noted in static systems and 
enhance operational efficiency and to provide a robust 
response to unforeseen situations or deadlocks.  

The framework is based on an auction model, where each 
AGV can offer its unsuitable tasks to a common pool. In 
this proposed cooperation strategy, AGVs commit to 
autonomously exchanging tasks that are inadequate, so 
that they better fit the capabilities and current positions of 
other vehicles in the system. Specifically, the primary goal 
is to optimize the distribution of tasks, in order to 
minimize disruptions in each AGV's operational schedule 
while simultaneously maximizing the efficiency and 
productivity of the system. The introduction of task 
switching acts as a regulatory mechanism to balance two 
seemingly opposing objectives: optimizing the overall 
efficiency of the system, which reflects a cooperative 
vision, and maximizing the number of tasks completed by 
each AGV, which reflects a more individual and 
autonomous perspective. 

The cooperative exchange logic, embedded within the 
broader framework of solving the Pickup and Delivery 
Problem (PDP), is explained in Figure1, and more detailed 
in the following sentences: 

• Initialization 

The algorithm begins with an initialization phase, where 
each machine in the system is defined with a specific 
position (x, y). Each AGV is initialized with a starting 
position and a "wallet" that can be used to track 
transactions or economic interactions within the system. 

• Management of Incoming Tasks 

In managing incoming tasks, the algorithm enters a 
simulation loop that continues as long as the simulation is 
ongoing. If a new task arrives, a Vickrey auction is 
initiated to assign it. In this auction, each AGV assesses 
the impact of inserting the new task into its initial itinerary 
and calculates a bid price for the assignment of available 
tasks. Bids can be calculated using only the cost for the 
robot to perform the specific task, but they can also be 
calculated using the marginal cost for the robot to execute 
the task considering other tasks on its list (DeRyck et al., 
2020). To achieve good performance in task allocation, 
bid calculation based on marginal cost is the most 
advantageous. In the proposed approach every AGV has a 
local list of tasks to perform. The goal is to assign the 
incoming task to the AGV that can integrate it into its 
work plan with the least impact. The impact of inserting a 
new task into an existing schedule is calculated as the 
difference between the total distance the AGV would 
travel after inserting the task in the previous schedule and 
the distance the AGV would travel without the task. The 
AGV evaluates all possible insertions of the new task 
within its initial planning. Among all the potential 
combinations the AGV could make, it selects the lowest 
one. The Bid Function of each AGV, for a task, is then 
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calculated as a fraction (Task Impact\Total Distance) of 
the wallet associated with each AGV, proportional to the 
task's value. A high value of the Bid indicates that the task 
is very rewarding relative to the effort required to 
complete it. AGV bids are assessed and compared, and 
the task is assigned to the AGV that has submitted the 
second highest bid, and the AGV's route is updated 
accordingly.  

 
Figure 1: Pseudocode of the proposed method 

 

• Management of Inactive Tasks 

Similarly, the algorithm manages tasks that have become 
inactive. During the execution time the AGV evaluates its 
task queue and identifies, through a temporal variable, 
those that exceed a certain time threshold Tmax without 
being completed. These tasks are placed in a collection of 
inactive tasks and a Vickrey auction is used to transfer the 
task to another AGV. In this phase it is not certain that 
the task will be transferred. An activation function is 
needed to evaluate if the offers received to carry out the 
switch are actually advantageous. In this exchange of 
activities between AGVs, the transferring AGV pays a 
certain amount from its portfolio to the receiving one. 

Once the switch is confirmed, the task is transferred to 
the AGV with the second highest bid, and the list of 
assigned tasks and the AGV's wallet are updated. 

• Task Execution 

For each AGV, the assigned tasks are executed one after 
the other. The AGV moves from its current position to 
the machine of the task's origin, then to the destination of 
the task, updating its position upon completion of the 
task. This process continues until all assigned tasks have 
been completed. 

• Performance Indicator Evaluation (KPIs) 

Finally, the algorithm evaluates various KPIs, such as: 

• AGV Utilization: through which we measure 
how much time AGVs are actively engaged in completing 
tasks.  

• Average Task Completion Time: through 
which we measure the average time needed to complete a 
task.  

• Number of Tasks Completed: through which 
we measure the total number of tasks completed within a 
given timeframe. 

These indicators help measure the efficiency of the AGV 
system and the effectiveness of the Vickrey auction in task 
assignment. 

The model was tested in Anylogic©, within an hybrid 
Agent Based – Discrete Event Simulation (AB-DES) 
simulation environment, illustrated in Figure2, with two 
different scenarios. By using Discrete Event Simulation 
(DES), it's possible to model the system as a sequence of 
distinct events. This allows us to take into account 
temporal variations and dynamic events, such as the 
arrival of new tasks. In our context, DES is used to model 
and simulate the workflow of the AGVs and task 
execution. Agent-Based Modelling (ABM) is used to 
model each AGV as an autonomous agent, which can 
make decisions, interact with other agents by participating 
in an auction, make bids based on its own task evaluation, 
and exchange problematic tasks over time.  

In this model, leveraging the capabilities of DES blocks, 
we incorporated a fleet management component that 
allows the configuration of AGV properties to either 
follow path-guided or free-path settings. For our analysis, 
we opted for the free-path setting, thereby enhancing the 
operational dynamics of the AGVs. This approach aligns 
closely with the autonomous mobile robots (AMRs) 
functionality, as extensively discussed in the work by 
Fragapane et al., 2021. 

In the first experimental setup, only competitive logic, 
without switch function, is active, while in the second 
experimental setup, the cooperative logic is implemented, 
varying the number of machines and the number of 
AGVs. Figure3, Figure4 and Figure5, detail the 
combinations of AGVs and machines involved in each 
simulation and the results of the KPIs are compared 
between the use of competitive logic and the proposed 
cooperative logic.  
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Figure 2: Anylogic Main environment detail 

 

From this experimental campaign, it emerged that the 
introduction of cooperative logic led to an increase in 
AGV utilization. With 2 AGVs and 5 machines, AGV 
Utilization went from 46% to 50%, corresponding to an 
improvement of 8.7%. With 3 AGVs and 6 machines, the 
increase was from 53% to 57%, an increment of 7.5%. 
These improvements indicate that the AGVs were 
employed more intensively, reducing idle times. The 
Average Task Completion Time also saw a reduction, 
indicating increased efficiency. For AGVs with 5 
machines, the time dropped from 2.12 to 2.00 (a 
reduction of 5.7%) and from 2.23 to 2.20 (a reduction of 
1.3%) with 6 machines. This demonstrates that the 
cooperative logic enabled tasks to be completed more 
quickly, optimizing routes or improving task assignment. 
Finally, there was an increase in the Number of Tasks 
completed. For 2 AGVs with 5 machines, the number 
rose from 15.8 to 16.5, showing an improvement of 4.4%. 
Even with 3 AGVs and 5 machines, the number went 
from 15.08 to 16.0 (an increase of 6.1%). This rise in the 
number of tasks completed reflects a direct improvement 
in productivity due to cooperation. 

It is also crucial to acknowledge that, as this study is still 
in its preliminary simulation phase, a comprehensive 
comparison with other existing works, particularly non-
auction-based algorithms, has yet to be undertaken. This 
choice reflects the current focus on developing and testing 
individual functionalities rather than comparative analysis 
at this stage. Future research will aim to address this gap 
by incorporating a broader range of comparisons to fully 
assess the algorithm's effectiveness and versatility in more 
complex scenarios. 

 

 
Figure 3: AGV Utilization simulation results 

 

 
Figure 4: Average Task Completion Time simulation 

results 

 

 
Figure 5: Task Completed Number simulation results 

 

Testing this algorithm in a simulated environment allows 
us to monitor its behaviour under controlled conditions. 
However, extending these results to real-world 
environments introduces several challenges: 

• Exposure to real-world complexity for refining 
the algorithm to handle unpredictability, such as 
equipment malfunctions and human interactions; 

• Integration with existing logistics and 
management for advancing interoperability and 
ensuring smooth operation across different 
technological ecosystems. 

To address these challenges, conducting pilot tests in real 
environments is essential to validate and refine the 
algorithm with actual performance data. Finally, iterating 
the design based on feedback received during these tests is 
crucial to further improve the robustness and adaptability 
of the system.  

 

4. Conclusions 

In an increasingly dynamic production scenario, it 
becomes essential to acquire the skills and ability to 
allocate productive resources more effectively in order to 
adequately respond to new market challenges. Therefore, 
leveraging the technological innovations made available by 
the Fourth Industrial Revolution, this work focuses on the 
efficient implementation of autonomous guided vehicles 
(AGVs) for Material Handling operations, aiming to 
exploit the potential of AGVs, and on auction theory as a 



XXIX SUMMER SCHOOL “Francesco Turco” – Industrial Systems Engineering  

tool for decentralizing operational decisions. The ultimate 
goal is to develop a flexible and scalable AGV fleet 
management model capable of adapting to the dynamic 
changes of internal logistics and managing specific Pickup 
and Delivery Problem (PDP), both static and dynamic, 
each with a unique and irreplaceable origin and 
destination. To this end, the analysis began with a study of 
Auction Theory and the numerous methods proposed in 
the literature that have previously addressed the same 
problem. Using the software Anylogic©, a simulation tool 
was developed that allowed the evaluation of the system's 
performance through an experimental campaign, 
consisting of two different experimental plans, each aimed 
at analysing different scenarios. By comparing the results 
achieved in competitive logic, which aims to maximize 
individual interests, and the results obtained in 
cooperative logic, which, despite achieving worse personal 
outcomes, strives for a better global solution, the task 
switching process is enhanced with increased efficiency. 
Cooperation among AGVs allows for a more strategic and 
flexible use of mobile resources, optimizing both 
workload and time management. This approach is 
particularly effective in complex operational environments 
where tasks can change rapidly and where operational 
efficiency is crucial. In subsequent studies, an attempt will 
be made to also consider the aspect related to the 
machines, specifically their production speed, thereby 
aiming to manage and limit the starvation of machines 
without compromising the optimal use of AGVs. This will 
involve developing advanced algorithms that can 
dynamically adjust AGV tasks based on real-time 
production metrics and machine availability. The goal is to 
create a more integrated and responsive system that not 
only enhances the efficiency of the AGVs but also ensures 
that the entire production line operates smoothly and 
without unnecessary delays. By further aligning the 
operational time of AGVs with the production demands 
of the machines, we aim to achieve a balanced system that 
optimizes resource utilization across the board. 
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