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Abstract: Optimizing Distribution Networks (DNs) is vital for retailers' profitability, impacting supply chain 
performance in terms of service levels and costs. A key decision in DN configuration is the stock deployment policy, 
which involves choosing between centralized, decentralized, and hybrid DNs for each Stock Keeping Unit (SKU). 
This decision is challenging since many variables influence the choice of the optimal (cost-effective) stock 
deployment policy, and they must be considered simultaneously (e.g., number of customers served, number of 
distribution centers, SKU unitary cost, SKU backorder cost, etc.). Moreover, retailers can manage thousands of 
SKUs, therefore the decision on the optimal stock deployment policy must be repeated several times. To simplify 
this decision, retailers seek support tools that guide in associating SKUs with optimal deployment policies. To 
address this need, Dimensional Analysis (DA) and, particularly, the Buckingham Theorem (BT) offer promising 
methodologies. Indeed, after modeling the DN configuration problem in a mathematical form, BT checks the 
meaningfulness of its governing equations, identifies influential variables, extracts knowledge on how they mutually 
when influencing the optimal stock deployment policies, and facilitates informed decisions about the option to 
select. Accordingly, BT allows for comparing different DN configurations, creating performance maps which suggest 
similar stock deployment decisions for similar (scaled) SKUs, suppliers, distributors, etc. Despite the potential 
usefulness of these maps, no study has explored the capabilities of BT to address stock deployment decisions. This 
paper addresses this gap by leveraging BT to develop supporting maps for multidimensional scaling, similarity 
analysis, and economic performance prediction of centralized, decentralized, and hybrid DNs. The achieved maps 
will constitute the main results of this study, providing retailers with decision support tools for associating similar 
DNs with optimal stock deployment policies. These maps offer a visual aid for retailers to make informed decisions 
on DN configuration, ultimately enhancing supply chain performance.  
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1. Introduction 

In their simplest form, Distribution Networks (DNs) 
consist of two-echelon supply chains, in which one or 
more suppliers replenish stocks in a set of Distribution 
Centres (DCs), and then retailers deliver stocks from DCs 
to meet customers' demand at specific consumption 
points (Tapia-Ubeda et al., 2020). To ensure efficient 
retailers’ performance and competitive advantage, a crucial 
task is to optimally configure DNs, which allows for 
ensuring high service levels while reducing total logistic 
costs. Configuring DNs involves making various 
decisions, such as determining the type, size, number, and 
location of DCs where stocks are temporarily stored on 
their way to end customers (Alemany et al., 2021). Among 
the crucial decisions influencing DN configuration, 
selecting stock deployment policies has been reported as 
of primary importance, involving a choice between 
centralized, decentralized, and hybrid DNs (Gregersen 
and Hansen, 2018). In centralized DNs, all stocks are 

allocated in a single DC, which serves all customers. The 
benefits of centralization involve the risk-pooling effect 
that helps mitigate demand uncertainty, leading to reduced 
inventory levels, low replenishment orders, and reduced 
inventory costs. However, it comes at the expense of 
longer distribution times and decreased DN flexibility. 
Conversely, in decentralization, stocks are stored in 
multiple peripheral DCs, each serving local customers. 
Decentralization offers advantages such as high DN 
flexibility due to shorter distances between DCs and 
customers, resulting in quicker distribution times and high 
service levels. Nevertheless, it comes with increased 
inventory costs, higher replenishment orders, lower 
inventory turnover, and no risk-pooling. Finally, in hybrid 
DNs, trade-off benefits are achieved since an intermediate 
number of DCs is selected between one (centralization) 
and one per local customer (decentralization). When 
evaluating the choice between centralized, decentralized, 
and hybrid DNs, three main challenges emerge (Cantini et 
al., 2022a). Firstly, retailers typically handle thousands of 
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Stock Keeping Units (SKUs), requiring a tailored stock 
deployment policy for each of them (depending on 
individual factors such as product type and demand) 
(Mangiaracina et al., 2015). Secondly, numerous influential 
variables affect the decision for the optimal stock 
deployment policy (e.g., the number of customers, DC 
location with respect to customers, logistic costs, etc.). 
These variables must be considered simultaneously due to 
their mutual interactions affecting DN characteristics 
(Cantini et al., 2023). Lastly, in analysing different 
combinations of influential variables and their effect on 
DN configuration performances, the optimal solution 
must be selected by finding a trade-off between 
conflicting needs, such as increasing service levels while 
reducing logistics costs. Due to these three challenges and 
the multitude of stock deployment policies (i.e., 
centralized, decentralized, and hybrid DNs), configuring 
DNs is a complex task that necessitates the adoption of 
structured methodologies. Among existing methodologies, 
the majority involve solving mathematical programming 
models to maximize the performance of specific DNs 
(Biuki et al., 2020). Conversely, according to (Cantini et 
al., 2022b), few studies propose direct comparisons 
between the performance of different stock deployment 
policies. Consequently, businesses lack overarching 
guidelines to assess broader scenarios and discern the 
advantages of adopting centralized, decentralized, or 
hybrid DNs. 

Against this backdrop, Dimensional Analysis (DA) 
emerges as a valuable method to assist retailers in DN 
configuration. Indeed, by converting a general problem 
(e.g., the DN configuration) into a mathematical form, 
DA examines the meaningfulness of its governing 
equations. Therefore, DA identifies influential variables 
and how they interact when affecting outcomes. 
Consequently, DA allows retailers to predict the 
performance of centralized, decentralized, and hybrid 
DNs, determining the optimal (i.e., most cost-effective) 
alternative. DA achieves its highest fulfilment with the 
Buckingham Theorem (BT) (Miragliotta, 2011). BT states 
that any set of equations describing a problem can be 
simplified using dimensionless variables known as 
'dimensionless groups'. Specifically, the number of 
influential variables describing a problem can be decreased 
by the number of independent physical dimensions 
(length, mass, time, etc.) present in its modelling 
equations. As a result, an original problem 

 characterized by  (dimensional) 

influential variables described by  fundamental 
dimensions, can be simplified to a function of ( ) 
dimensionless groups, thus becoming 

 (Brunetkin et al., 2018). Due to 
this statement, BT promises to assist retailers in DN 
configuration in three ways. First, by identifying a reduced 
set of dimensionless groups that govern the problem’s 
outcomes, BT diminishes the number of variables 
necessary to evaluate when predicting the performance of 
different stock deployment policies. Second, BT enhances 
understanding of the DN configuration problem, 
highlighting relationships among its influential variables. 
Lastly, BT enables similitude and scaling considerations. 

Particularly, according to BT, DN configurations sharing 
identical values of dimensionless groups (despite differing 
influential variables) can be generalized to achieve the 
same performance. Hence, as traditionally done in other 
sectors such as turbomachinery (Bicchi et al., 2023), BT 
facilitates the creation of performance maps for DN 
configurations, where the performance of centralized, 
decentralized, and hybrid scaled DNs is shown. By 
referring to scaled DNs, companies can put themselves in 
similarity and make strategic choices of DN configuration. 

Despite the potential usefulness for retailers, the 
application of BT in the field of DN configuration (and 
more broadly, in Operations Management) has been 
overlooked by the literature (Miragliotta, 2011). This 
paper aims to bridge this gap by exploring, for the first 
time, the use of BT to achieve a generalized dimensionless 
model for comparing the economic performance of 
centralized, decentralized, and hybrid DNs. As the 
outcome, ten dimensionless groups are identified to 
predict the performance of scaled DN configurations. 
Therefore, retailers are provided for the first time with 
visual tools (i.e., performance maps) through which they 
can compare scaled DNs, and select the most cost-
effective stock deployment policy for their company based 
on similitude analyses. This paper is organized as follows. 
Section 2 details the mathematical equations considered to 
express the DN configuration problem. Section 3 
describes how to apply BT in DN configuration. Section 4 
shows the results of BT application in DN configuration, 
discussing how retailers can generate performance maps 
and showing their use in an example case study. Finally, 
Section 5 offers some conclusions. 

 
2. DN configuration problem 

To determine the optimal stock deployment policy for 
each SKU, the mathematical model by (Cantini et al., 
2022b) was adopted, which relies on the notation in 
Appendix A. Three main stock deployment policies were 

compared ( =1, 2, and 3 in Figure 1), which differ based 
on their degree of centralization ( , Equation 1). In 
Equation 1,  is the number of DCs able to fulfil the 
customer demand while  is the number of customers 
served.  ranges between 0 and 1, where 0 is 
decentralization, 1 is centralization, and 0.50 is a hybrid 
DN configuration. 

  (1) 

 

 

Figure 1. Stock deployment policies investigated 
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For brevity, here we considered only three main stock 
deployment policies but the work could easily be extended 
to any other alternative with  between 0 and 1. 
Among the three stock deployment policies ( ), the 
mathematical model selects the optimal one by seeking the 
alternative with the minimum total cost ( , Equations 

2-3), which also respects a pre-established service level 
( ).  is the sum of several cost items, which are 

detailed in Table A1 and calculated with Equations 4-16. 

   (2) 

  (3) 

    (4) 

   (5) 

    (6) 

    (7) 

   (8) 

     (9) 

  (10) 

    (11) 

     (12) 

   (13) 

    (14) 

     (15) 

(16) 

Notably, Equation 16 determines the average distance to 
be travelled from DCs to customers in different DN 
configurations, leveraging the formula introduced by 
Cantini et al. (2022b). Whereas Equations 17-19 depend 
on the inventory control policy adopted for the SKU, 

which is assumed to respect a reorder point ( ), safety 

stocks ( ), and an optimal order quantity ( ). 

    (17) 

    (18) 

   (19) 

Hence, the described mathematical model, linking each 
SKU to its most cost-effective stock deployment policy, 
appears influenced by 14 influential variables (see Table 
A1). However, existing literature offers limited insight into 
how these variables interact with each other and impact 
the optimal stock deployment policy. Conversely, the 
application of BT to the DN configuration problem can 
provide a deeper understanding of variables’ interaction 
and their impact on , thus assisting retailers in 

making informed decisions about the optimal stock 
deployment policy. 

 
3. BT application for DN configuration 

To apply BT to the DN configuration problem three steps 
were performed, following (Langhaar, 1951). In step 1, a 
mathematical relation of type  was 
identified to describe the addressed problem (i.e., DN 
configuration) and link it to =14 influential variables of 

(Cantini et al., 2022b)’s model. The identified 
mathematical relation was constituted by Equation 3. In 
step 2, the influential variables representing the problem 
were listed and associated with their  physical 
dimensions, resulting in the dimensional matrix in Table 1. 
Table 1 includes =4 physical dimensions: time [T], 
quantity [Q], money [$], and length [L, i.e., distance]. 
These dimensions are in line with those suggested for an 
operations management problem by (Miragliotta, 2011; 
Vignaux, 2001). Notably, the numbers in Table 1 are the 
values of exponents (powers) by which each influential 
variable is related to the respective physical dimension. 
 

Table 1: Dimensional matrix representing the DN 
configuration problem 

 Physical dimensions 

Influential variables [Q] [T] [$] [L] 

 0 0 0 0 

 0 0 0 0 

 0 0 0 0 

 1 -1 0 0 

 1 -1 0 0 

 0 0 1 0 

 0 1 0 0 

 -1 0 1 0 

 0 0 1 0 

 0 -1 0 0 

 0 0 0 1 

 0 0 1 -1 

 1 0 0 0 

 1 0 0 0 

 

Finally, in step 3, a set of =10 independent 
dimensionless groups were found through which the DN 
configuration problem (i.e., Equation 3) could be 
reformulated as . To define 
dimensionless groups, among the 14 influential variables, 
we selected a subset of  independent ones by 
applying the Rouché-Capelli theorem (Horbiychuk et al., 
2021). Accordingly, we sought out 4 variables whose 
dimensional sub-matrix (derived by excluding all rows and 
columns from Table 2 except those corresponding to the 
selected 4 variables) had a non-zero determinant. 

Particularly, we selected the subset: , , , and . Hence, 
a system of linear algebraic equations was established to 
determine the exponents (denoted with ) based on 
which to raise variables’ physical dimensions and make 
their ratio dimensionless. In this way, for each influential 
variable, we found a dimensionless group (i.e., the 
dimensionless ratio), herein expressed with . Below we 
provide an example to clarify how dimensionless groups 

were achieved. Considering the influential variable , 
proper exponents  were identified to render Equation 20 
dimensionless. This involved searching for the exponents 
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that verified Equation 21, resulting in , , 
, and . These exponents led to the 

dimensionless group  in Equation 22. 

       (20) 

 (21) 

        (22) 

The approach shown for  was repeated for all influential 
variables, leading to the dimensionless groups in 
Equations 23-31. Moreover, this approach was applied to 

, achieving the dimensionless group in Equation 32. 

     (23) 

    (24) 

     (25) 

     (26) 

    (27) 

    (38) 

    (29) 

     (30) 

     (31) 

    (32) 

In summary, BT facilitated the transformation of 
Equation 3 into a function of ten dimensionless groups, as 
shown in Equation 35. The following Section elaborates 
the practical utility of Equation 35. 

 (35) 

 
4. Results and discussion 

An immediate benefit of applying BT is the reduction of 
influential variables affecting DN configuration (i.e., from 

14 affecting  in Equation 3 to 10 dimensionless 
groups affecting  in Equation 35). This reduction may 
seem insufficient for streamlining DN configuration 
choices and support retailers’ decision-making. However, 
the usefulness of BT can be seen from another 
perspective. Dimensionless groups, by definition, enable 
similarity and scaling considerations for stock deployment 
policies. Plotting the variation of these dimensionless 

groups and their consequent impact on  of different 
stock deployment policies yields performance maps. In 
turn, performance maps offer two contributions. Firstly, 
they provide deeper insights into the decision-making 
problem by graphically representing the relationships 
between influential variables and their impacts on the cost 
performance of centralized, decentralized, and hybrid 
DNs. Secondly, they suggest similar stock deployment 
decisions across contexts with identical dimensionless 
group values. Therefore, retailers can optimize their stock 
deployment policies by referring to the optimal decisions 

indicated for similar DNs, eliminating the need to apply 
the mathematical formulas in Section 3. Accordingly, the 
decision-making process is simplified while maximizing 
the knowledge gained from the dimensionless family of 
DN configurations outlined in the performance maps. 

While creating performance maps based on ten 
dimensionless groups might seem challenging, (Sonin, 
2004) proposes an approach to accomplish this task. 
According to (Sonin, 2004), the number of dimensionless 
groups representing a problem can be reduced by fixing 
the values of influential variables over which decision-
makers (i.e., retailers) have no control. Building on this 
concept, this paper presents an example of practical BT 
application on the DN configuration of a real company 
(Company A), providing the respective performance 
maps. Based on the performance maps, this paper 
explains how maps can be leveraged by retailers to make 
decisions and how their outcomes provide insights into 
DN configuration. We acknowledge that the provided 
example does not cover all possible applications of BT in 
DN configuration. Nevertheless, this study serves as a 
basis for exploring other applications in future works. 

4.1 Case study application 

Company A is an Italian bus spare parts retailer, which 
owns 5 DCs. Among the SKUs managed by this retailer, a 
specific one is served to a well-consolidated customer 

market (i.e., , , , , , , and  fixed). For this SKU, 
the retailer follows an established procedure for ordering 
stock replenishment from suppliers (  fixed). This retailer 
is interested in gaining knowledge on how the total cost of 
the existing DN ( ) is affected by the choice of the 

suppliers to procure the SKU (upstream DCs) and the 
transportation mode for delivering the SKU to customers 
(downstream DCs). Moreover, the retailer is interested in 
evaluating if the current stock deployment policy (i.e., 
centralization in a single DC among the 5 ones) associated 
with the considered SKU with the current supplier and 
transportation mode is optimized or should be modified 
to reduce total logistic costs (switching to decentralized or 
hybrid DN configurations). Also, the retailer wants to 
compare the current supplier and transportation mode 
with novel alternatives (summarized in Table 2), aiming to 
assess if new distribution options could be more cost-
effective and if the changes of suppliers and 
transportation mode should result in varying stock 
deployment decisions. 
 

Table 2. Characteristics of current and new possible 

suppliers and transportation modes 

Influential 

variable 

[unit measure] 

Current 

combination 

supplier-

transport mode 

New possible 

combination 

supplier-

transport mode 

 [€/km*vehicle] 0.70 1.05 

 [units] 5,000 7,500 

 [years] 0.010 0.015 
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In this scenario, BT facilitates the creation of performance 
maps (Figure 2) suggesting the most cost-effective stock 
deployment policy ( ) to be associated with the 
considered SKU as the dimensionless groups vary, with all 
influential variables of Table A1 fixed except those linked 

to the characteristics of the supplier ( ) and transportation 

mode ( , ,  and ). By fixing all influential variables 

that are beyond the retailer’s control (i.e., , , , , , , 

, and ), the problem’s degrees of freedom are reduced, 
leading Equation 35 to transform into Equation 36. 

 (36) 

Accordingly, we can derive performance maps (Figure 2) 
that provide insights on how suppliers’ and transportation 
mode’s characteristics affect the choice between 
centralized, decentralized, or hybrid DN configurations. 
As a matter of fact, the groups in Equation 36 are no 
longer dimensionless. However, according to (Sonin, 
2004), they constitute the most efficient parameters for 
scaling DN configurations and allowing similitude 
considerations to be made in this application scenario. 

 

 

4.2 Case study discussion 

The main contribution of the performance maps in Figure 
2 are as follows. First, for the considered SKU, they depict 
the mutual interaction between parameters characterizing 
suppliers and transportation mode, and their impact on 
the total DN configuration cost (as per Equation 36). 
Therefore, they provide the retailer with insights into the 
decision-making problem. For instance, considering a 
supplier and a transportation mode characterized by 
values of the dimensionless groups expressed by the red 
dot in Figure 2 (where the dashed lines show the dot 
projections on the x, y, and z axes), the retailer may note 
the following considerations. As the degree of 
centralization ( ) increases – namely sliding down in 
Figure 2 –, the total cost of the DN ( ) increases (i.e., 

the colour of curves changes from blue to yellow, with an 
increase in  of around 127%). This result proves that, 

for the considered SKU, the current stock deployment 
policy adopted (i.e., centralization, with =1) is not 
optimal. Rather, in the existing DN, the retailer should 
switch to decentralization ( =0), keeping stocks of the 
SKU in all the 5 DCs owned by Company A. 

Furthermore, within each performance map in Figure 2 

(e.g., focusing on the lower one, which represents the 

current situation with =1), the total cost of the DN 

changes as follows. On the x-axis,  significantly 

increases as the service level ( ) decreases. On the y-axis, 

 increases if the value of the dimensionless group  

increases (namely, when the procurement lead time is 

lower than the product between the unitary transportation 

cost and the distance from DC to customers). Conversely, 

on the z-axis,  remains approximately constant if the 

value of the dimensionless group  increases, meaning that 

the ratio between the capacity of transportation vehicles 

and the procurement lead time has lower influence on 

 compared with the other dimensionless groups. 

Since the performance maps are three-dimensional, this 

proves that dimensionless groups on the x and y axes (  

and ) not only have marked impact on the cost 

performance of the current DN configuration but also 

have a strong mutual interaction when affecting the DN. 

Another contribution of the proposed performance maps 

is that Figure 2 provides the retailer with user-friendly 

visual tools to conduct similarity and scaling 

considerations. Specifically, the retailer can associate all 

suppliers and transportation modes characterized by 

identical values of dimensionless groups (i.e., scaling 

parameters in Equation 36) to the same optimal stock 

deployment policies, eliminating the need to solve the 

mathematical model outlined in Section 2. For example, 

suppose the retailer plans to substitute its transportation 

mode and supplier by switching from the current 

alternatives to new ones with the characteristics in Table 

2. Suppose both the current position of DCs and the 

customer service level remain unchanged (i.e., =100 km 

and =0.95, respectively). In these conditions, with 

reference to Figure 2, the retailer can quickly identify the 

Figure 2. Performance maps for the proposed case study 
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most cost-effective stock deployment policy to be 

associated with the new combination supplier-

transportation mode by leveraging the knowledge already 

gained for the current combination. Indeed, according to 

the characteristics outlined in Table 2, the current and 

new alternatives share the same values of dimensionless 

groups (i.e., =7’000 and =500’000). Therefore, they 

should be associated to the same optimal stock 

deployment policy (i.e., decentralization with =1), 

meaning that, under similarity conditions, the current and 

new combinations of supplier-transportation mode show 

the same economic impact ( ). This example 

illustrates how the performance maps provided in Figure 

2 can assist the retailer in reducing the time and 

computational efforts required to make distribution and 

vendor-rating decisions, especially when evaluating several 

combinations of suppliers and transportation modes. 
 
5. Conclusion 

This paper proposes the application of BT to support 
retailers in configuring DNs, focusing on choosing the 
most cost-effective stock deployment policy (i.e., 
centralization, decentralization, or hybrid DN 
configurations). After modeling the DN configuration 
problem in a mathematical form, BT checks the 
meaningfulness of its governing equations, identifies 
influential variables, and extracts knowledge on how they 
interact with each other when affecting the most cost-
effective stock deployment policies. Hence, BT facilitates 
retailers’ informed decisions about the most cost-effective 
stock deployment to select. Moreover, BT allows for 
creating performance maps which suggest similar stock 
deployment decisions for scaled DNs. 

At a theoretical level, this paper is the first one proposing 
BT (and, more in general DA) applications in the field of 
supply chain management. Moreover, the provided 
performance maps are the first visual tools proposed in 
the literature to summarize and explicitly compare the cost 
performance of centralized, decentralized, and hybrid SC 
configurations. At a practical level, the provided 
performance maps can reduce the time and computational 
efforts needed by retailers to optimize stock deployment 
policies. The findings of this paper (in particular the 
usefulness of the proposed performance maps) have been 
tested on an example case study. The case study has 
proven different contributions of the performance maps, 
allowing a retailer to evaluate: (i) the impact of different 
variables on the total cost ( ) of the DN; (ii) the cost-

effectiveness of changing the current stock deployment 
policy (switching from centralization to decentralization); 
(iii) and the possibility to change the current combination 
of supplier-transportation mode without impacting , 

thus reviewing the supply chain actors. 

The main limitations of this study are two. Firstly, BT is 
applied on the proposed mathematical model of (Cantini 
et al., 2022b), which is valid under certain initial 
assumptions. For instance, an (RP, Q) inventory control 
policy is assumed to manage stocks, SKUs are considered 
to follow a normal demand, etc. Secondly, a single case 

study is shown to test the proposed methodology, while 
BT application in DN configuration can open to many 
other applications. For example, we could consider the 
typical scenario described by (Cantini et al., 2022a) in 
which a retailer has well-consolidated partnership with a 
supplier (  fixed), possesses DCs at known geographical 
locations (  fixed), owns a fleet of distribution vehicles (  
and  fixed), follows an established procedure for 
ordering stock replenishment from the supplier (  fixed), 
and serves a specific customer market by guaranteeing a 
service level ( ,  fixed). In this scenario, BT can 
facilitate the creation of performance maps suggesting the 
optimal stock deployment policy ( ) to be associated 
with each SKU as the dimensionless groups in Equation 
35 vary, with all influential variables of Table A1 fixed 
except those linked to the characteristics of the SKU and 

customer demand (i.e., , , , , , and ). Accordingly, 
the provided performance maps would result in visual 
tools for inventory classification, associating groups of 
similar SKUs to similar DN configuration decisions. To 
remove the aforementioned limitations, future 
developments of this study could be two. First, to repeat 
the BT application when relaxing some simplifying model 
assumptions. For instance, considering SKUs with other 
demand distributions (e.g., Poisson), stochastic lead time, 
other inventory control policies, etc. Finally, to deepen the 
BT application in case studies and in other scenarios 
rather than the one described in Section 4.1. Eventually, 
BT applications could also be investigated in other 
operations management problems, providing other useful 
performance maps for assisting companies’ decision-
making. 
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Appendix A. NOTATION 

Table A1: Nomenclature used in this paper 

Index Description 
Unit 
measure 

 Stock deployment policy (i=1, 2, 3) - 

Influential 
variable 
(input 
data) 

Description 
Unit 
measure 

 Number of customers served - 

 Degree of centralization (0, 0.50, 1) - 

 
Expected service level (associated 
with the service factor  in a 
standard normal distribution) 

- 

 
Mean demand of one customer for 
the considered SKU 

units/time 

 
Standard deviation of the demand 
of one customer 

units/time 

 Unitary backorder cost of the SKU 
€/backord
er 

 
Average procurement lead time for 
receiving the SKU by the supplier 

time 

 
Unitary cost of purchasing the 
SKU from the supplier  

€/unit 

 Cost of issuing a supply order €/order 

 Inventory holding cost rate time-1 

 
Average distance from central DC 
to customers (when )  

km 

 Unitary transportation cost 
€/km*veh
icle 

 
Average quantity of SKU ordered 
by a customer in each demand 

units/dem
and 

 Capacity of transport vehicle units 

Decision 
variable 

Description 
Unit 
measure 

 Optimal reorder quantity of the 
SKU in a DC 

units 

 SKU reorder point in a DC units 

 SKU safety stocks in a DC units 

 Number of DCs in the DN - 

 Annual demand received by all 
customers in a DC 

units/time 

 
Average number of vehicles to 
transport the SKU from a DC to 
customers 

vehicles/t
ransportat
ion 

 
Average number of transports 
performed to distribute the SKU 
from a DC to customers 

transporta
tions/time 

 
Average distance from a DC to 
customers 

km 

 Average inventory level in a DC units 

 Average number of supply orders 
for the SKU 

orders/ti
me 

 Average number of backorders in a 
DC 

orders/ti
me 

Evaluated 
cost 

Description 
Unit 
measure 

 Total cost of the considered DN 
configuration 

€/time 

 Annual purchase cost €/time 

 Annual holding cost €/time 

 Annual ordering cost €/time 

 Annual backorder cost €/time 

 Annual transportation cost €/time 

 


